Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

At night many people see rings (called entoptic halos) surrounding bright outdoor lamps in otherwise dark surroundings. The rings are the first of the side maxima in diffraction patterns produced by structures that are thought to be within the cornea (or possible the lens) of the observer’s eye. (The central maxima of such patterns overlap the lamp.) (a) Would a particular ring become smaller or larger if the lamp were switched from blue to red light? (b) If a lamp emits white light, is blue or red on the outside edge of the ring?

Short Answer

Expert verified
  1. Ring will become larger
  2. Red color appears on the outside edge of the ring.

Step by step solution

01

The given data

Given that at night many people see rings (called entoptic halos) surrounding bright outdoor lamps in otherwise dark surroundings.

The rings are the first of the side maxima in diffraction patterns produced by structures that are thought to be within the cornea (or possible the lens) of the observer’s eye.

02

Concept and Formula used

The analysis of such patterns shows that the first minimum for the diffraction pattern of a circular aperture of diameter d is located by

sinθ=1.22λd(first minimum-circular aperture)

Here, θ is the angle from the central axis to any point on that circular minimum.

03

Change on ring size on switching the lamp from blue to red

(a)

If the lamp were switched from blue light to red light, light of a longer wavelength will appear as red has larger wavelength than blue.

From the equation: sinθ=1.22λd,

As wavelength λis increases, the distanced must also increase.

Hence, on switching the lamp from blue light to red light ring will become larger.

04

Light appearing on the outside edge of the ring

(b)

From part (a) it is clearthat red light will produce a ring with a greater distance than blue light.

If the person sees both rings, the red ring will be outside of the blue ring.

Hence, red color appears on the outside edge of the ring.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A diffraction grating has resolving power R=λavgΔλ=Nm. (a) Show that the corresponding frequency range f that can just be resolved is given by f=cNmλ. (b) From Fig. 36-22, show that the times required for light to travel along the ray at the bottom of the figure and the ray at the top differ by t=(NdC)sinθ. (c) Show that (Δf)(Δt), this relation being independent of the various grating parameters. Assume N1.

In a certain two-slit interference pattern, 10 bright fringes lie within the second side peak of the diffraction envelope and diffraction minima coincide with two-slit interference maxima. What is the ratio of the slit separation to the slit width?

In three arrangements, you view two closely spaced small objects that are the same large distance from you. The angles that the objects occupy in your field of view and their distances from you are the following: (1) 2ϕand ; (2) 2ϕand 2R; (3) ϕ/2and R/2. (a) Rank the arrangements according to the separation between the objects, with the greatest separation first. If you can just barely resolve the two objects in arrangement 2, can you resolve them in (b) arrangement 1 and (c) arrangement 3?

Monochromatic light (wavelength=450nm) is incident perpendicularly on a single slit (width=0.4mm). A screen is placed parallel to the slit plane, and on it the distance between the two minima on either side of the central maximum is 1.8mm.

(a) What is the distance from the slit to the screen? (Hint:The angle to either minimum is small enough thatsinθtanθ.)

(b) What is the distance on the screen between the first minimum and the third minimum on the same side of the central maximum?

A grating with d = 1.50 mm is illuminated at various angles of incidence by light of wavelength 600 nm. Plot, as a function of the angle of incidence (0 to 90°), the angular deviation of the first order maximum from the incident direction.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free