Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How much electrical energy is transferred to thermal energy in 2.00hby an electrical resistance of400Ωwhen the potential applied across it is 90.0V?

Short Answer

Expert verified

Electrical energy transferred to the thermal energy is 1.46×105J.

Step by step solution

01

The given data

a) Applied potential difference, V=90.0V

b) Resistance value,R=400Ω

c) Time taken to transfer the energy,t=2hor7200s

02

Understanding the concept of the energy

We know the relation between power and potential. From this relation, we calculate total power. Using this power, we can calculate the total time in seconds and find the energy transferred to the thermal energy.

Formulae:

The electrical power due to the applied potential difference,P=V2R (i)

The energy transferred by the system, E=Pt (ii)

03

Calculation of the transferred electrical energy

Using the given data in equation (i), we can get the electrical power or the rate of energy transfer as follows:

P=902400=8100400=20.3J/s

Now, we can get the value of the electrical energy transferred to the thermal energy using the given data in equation (ii) as follows:

E=20.3×7200=1.46×105J

Hence, the value of the energy transferred is 1.46×105J.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When a metal rod is heated not only its resistance, but also its length and cross-sectional area is changed. The relation R=ρL/Asuggests that all three factors should be taken into account in measuring r at various temperatures. If the temperature changes by1.00C, what percentage changes in (a) L, (b) A, and (c) Roccur for a copper conductor? (d) What conclusion do you draw? The coefficient of linear expansion is1.70x10-5K-1.

A linear accelerator produces a pulsed beam of electrons. The pulse current is0.50 A, and the pulse duration is0.10 ms. (a) How many electrons are accelerated per pulse? (b) What is the average current for a machine operating at 500 pulses/s ? If the electrons are accelerated to energy of 50 MeV, what are the (c) average power and (d) peak power of the accelerator?

An aluminum rod with a square cross section is 1.3 mlong and 5.2 mmon edge. (a) What is the resistance between its ends? (b)What must be the diameter of a cylindrical copper rod of length 1.3 mif its resistance is to be the same as that of the aluminum rod?

Earth’s lower atmosphere contains negative and positive ions that are produced by radioactive elements in the soil and cosmic rays from space. In a certain region, the atmospheric electric field strength is 120V/mand the field is directed vertically down. This field causes singly charged positive ions, at a density of 620cm-3 , to drift downward and singly charged negative ions, at a density of 550cm-3 , to drift upward (Figure). The measured conductivity of the air in that region is2.70×10-14(Ω·m)-1. Calculate (a) the magnitude of the current density and (b) the ion drift speed, assumed to be the same for positive and negative ions.

A fuse in an electric circuit is a wire that is designed to melt, and thereby open the circuit, if the current exceeds a predetermined value. Suppose that the material to be used in a fuse melts when the current density rises to 440A/cm2. What diameter of cylindrical wire should be used to make a fuse that will limit the current to 0.50 A?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free