Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 21-24, three identical conducting spheres initially have the following charges: sphere A,4Q ; sphere B,6Q ; and sphere C,0 . Spheres Aand Bare fixed in place, with a center-to-center separation that is much larger than the spheres. Two experiments are conducted. In experiment 1, sphere Cis touched to sphere Aand then (separately) to sphere B, and then it is removed. In experiment 2, starting with the same initial states, the procedure is reversed: Sphere Cis touched to sphere Band then (separately) to sphere A, and then it is removed. What is the ratio of the electrostatic force between Aand Bat the end of experiment 2 to that at the end of experiment 1?

Short Answer

Expert verified

The ratio of the electrostatic force between A and B at the end of experiment 2 to that of at the end of experiment 1 is0.375.

Step by step solution

01

The given data

The charge of sphere A is4Q

The charge of sphere B is-6Q

The charge of sphere C is0

The separation between them is larger than spheres.

Experiment 1: Sphere C is touched to sphere A and then to sphere B and then removed

Experiment 2: Sphere C is touched to sphere B and then to sphere a and then removed.

02

Understanding the concept of Coulomb’s law

According to Coulomb's Law of electrostatic attraction or repulsion within particles, the force acting on them is given as being directly proportional to the product of the charges on the particles and being inversely proportional to the separation between them. Using this concept, we can find out the force acting on them.

Formula:

The magnitude of the electrostatic force between any two particles,

F1=k|q1||q2|r2 (1)

03

Calculation of the ratio of force between A and B for experiment 2 to experiment 1 

In experiment 1, sphere C first touches sphere A, and they divided up their total charge (Q/2 plus Q) equally between them. Thus, sphere A and sphere C each acquired charge 3Q/4. Then, sphere C touches B and those spheres split up their total charge (3Q/4 plus –Q/4) so that B ends up with a charge equal to Q/4. The force of repulsion between A and B using equation (1) is given as:

F1=k3Q4Q4d2.............................(2)

Now, in experiment 2, sphere C first touches B, which leaves each of them with charge Q/8. When C next touches A, sphere A is left with charge 9Q/16. Consequently, the force of repulsion between A and B using equation (1) is given as:

F2=k9Q16Q8d2..............................(3)

Thus, the required ratio of the force between A and B for experiment 2 to experiment 1 is given by dividing equations (3) by (2) as follows:

F2F1=916183414=0.375

Hence, the value of the ratio is 0.375.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 21-26, particle 1 of charge-5.00qand particle 2 of charge +2.00q are held at separation Lon anx-axis. If particle 3 of unknown charge q3is to be located such that the net electrostatic force on it from particles 1 and 2 is zero, what must be the (a) x and (b) y coordinates of particle 3?

In Fig. 21-28a, particles 1 and 2 have charge 20.0μCeach and are held at separation distance d=1.50m. (a) What is the magnitude of the electrostatic force on particle 1 due to particle 2? In Fig. 21-28b, particle 3 of charge 20.0μCis positioned so as to complete an equilateral triangle. (b) What is the magnitude of the net electrostatic force on particle 1 due to particles 2 and 3?

In a spherical metal shell of radius R, an electron is shot from the center directly toward a tiny hole in the shell, through which it escapes. The shell is negatively charged with a surface charge density (charge per unit area) of.6.90×1013 C/m2What is the magnitude of the electron’s acceleration when it reaches radial distances (a)r=0.500Rand (b)2.00R?

Question: (a) Explain what happens to the balls of Problem 42 if one of them is discharged (loses its charge qto, say, the ground). (b) Find the new equilibrium separation x, using the given values of Land mand the computed value of |q|.

Question: In Fig. 21-32, particles 1 and2 of charge q1=q2=+3.20×10-19C are on ay-axis at distance d = 17.0 from the origin. Particle 3 of chargeq3=+6.40×10-19Cis moved gradually along the x-axis from x=0to x=+5.0 m. At what values ofxwill the magnitude of the electrostatic force on the third particle from the other two particles be (a) minimum and (b) maximum? What are the (c) minimum and (d) maximum magnitudes?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free