Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Fig. 21-23, three charged particles lie on an x-axis. Particles 1 and 2 are fixed in place. Particle 3 is free to move, but the net electrostatic force on it from particles 1 and 2 happens to be zero. If L23=L12, what is the ratio q1/q2?

Short Answer

Expert verified

The value of the ratio of charges q1/q2 is 4.00

Step by step solution

01

The given data

The net force on particle 3 is zero.

The separation between particles 2 and 3 is equal to the separation between particles 1 and 2 with all three particles lying on the x-axis,L23=L12

02

Understanding the concept of Coulomb’s law

According to Coulomb's Law of electrostatic attraction or repulsion within particles, the force acting on them is given as being directly proportional to the product of the charges on the particles and being inversely proportional to the separation between them. Using this concept, we can find out the force acting on them.

Formula:

The magnitude of the electrostatic force between any two particles,

F1=k|q1||q2|r2 (1)

03

Calculation of the ratio  q1/q2 

With rightward as positive magnitude for force, the net force acting on charge q3is given using equation (1) as:

F3=F13+F23=k|q1||q3|(L12+L23)2+k|q2||q3|(L23)2

(sincealllieinx-axis,theseparationbetween1and3isL12+L23)

We note that each term exhibits the proper sign (positive for rightward, negative for leftward) for all possible signs of the charges. For example, the first term (the force exerted on q3 by q1) is negative if they are unlike charges, indicating that q3is being pulled toward q1, and it is positive if they are like charges (so q3would be repelled from q1). From, the given data, the net force on particle 3 is zero, thus, the above equation becomes

k|q1||q3|(L12+L23)2+k|q2||q3|(L23)2=0q14.00+q2=0q1q2=4.00

Hence, the value of the ratio is 4.00

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In crystals of the salt cesium chloride, cesium ions Cs+form the eight corners of a cube and a chlorine ion Clis at the cube’s center (Fig. 21-36). The edge length of the cube is 0.40nm. The Cs+ions are each deficient by one electron (and thus each has a charge of role="math" localid="1661790179659" e), and the Clion has one excess electron (and thus has a charge of -e). (a)What is the magnitude of the net electrostatic force exerted on the Clion by the eight Cs+ions at the corners of the cube? (b) If one of theCs+ions is missing, the crystal is said to have a defect; what is the magnitude of the net electrostatic force exerted on theClion by the seven remainingCs+ions?

Point charges of +6.0μCand 4.0μCare placed on a x-axis, at x=8.0mand x=16m, respectively. What charge must be placed at x=24mso that any charge placed at the origin would experience no electrostatic force?

What must be the distance between point charge q1=26.0μc and point chargerole="math" localid="1661869629566" q2=-47.0μc for the electrostatic force between them to have a magnitude of 5.70 N ?

Figure 21-14 shows two charged particles on an axis. The charges are free to move. However, a third charged particle can be placed at a certain point such that all three particles are then in equilibrium. (a) Is that point to the left of the first two particles, to their right, or between them? (b) Should the third particle be positively or negatively charged? (c) Is the equilibrium stable or unstable?

Question: (a) Explain what happens to the balls of Problem 42 if one of them is discharged (loses its charge qto, say, the ground). (b) Find the new equilibrium separation x, using the given values of Land mand the computed value of |q|.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free