Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A100Wlamp has a steady current of0.83Ain its filament. How long is required for1molof electrons to pass through the lamp?

Short Answer

Expert verified

The time taken by one mole of electrons to pass through the lamp isΔt=1.3days

Step by step solution

01

Given

Current,i=0.83 A,

Power,P=100 W,

1mole=6.02×1023 atoms

02

Understanding the concept

The rate at which the energy is transferred between two bodies is known as power. It can also be defined as the amount of energy (E) transferred from one body to another in the unit time interval.

P=Et

Here, t is the time taken to transfer energy(E) .

03

Calculate the time required for 1 mol of electrons to pass through the lamp

Electric current (i)is the rate of transfer of charge with respect to time.

i=ΔqΔt

If i=0.83 A, the time it takes for one mole of electron to pass through the lamp is

Δt=Δqi=(6.02×1023)(1.60×1019 C)0.83A=1.16×105 sec=1.34 days

One mole of electrons can pass in1.34 days.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Identify X in the following nuclear reactions:

(a) H1+B9eX+n;(b)C12+H1X;(c)N15+H1H4e+X.Appendix F will help.

In Fig. 21-25, the particles have charges q1 = -q2=100nCand q3 = -q4=200nC and distance a=5.0cm. What are the (a) xand (b) ycomponents of the net electrostatic force on particle 3?

In Fig. 21-33, particles 2 and 4, of charge -e, are fixed in place on a yaxis, aty2=-10.0cmand y4=5.0cm. Particles 1 and 3, of charge -e, can be moved along the xaxis. Particle 5, of charge, is fixed at the origin. Initially particle 1 is at x1=-10.0cmand particle 3 is at. x3=-10.0cm (a) To what xvalue must particle 1 be moved to rotate the direction of the net electric forcefneton particle 5 by 30°counterclockwise ? (b) With particle 1 fixed at its new position, to what xvalue must you move particle 3 to rotate fnet
back to its original direction?

In Fig. 21-27a, particle 1 (of charge q1) and particle 2 (of chargeq2) are fixed in place on an x-axis, 8.00cmapart. Particle 3 (of chargeq3=+8.00×10-19C) is to be placed on the line between particles 1 and 2 so that they produce a net electrostatic force on it. Figure 21-27bgives the xcomponent of that force versus the coordinate xat which particle 3 is placed. The scale of the x-axis is set by xs=8.0cm. What are (a) the sign of charge q1 and (b) the ratio q2/q1?

The magnitude of the electrostatic force between two identical ions that are separated by a distance of 5.0×10-10mis3.7×10-9N. (a) What is the charge of each ion? (b) How many electrons are “missing” from each ion (thus giving the ion its charge imbalance)?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free