Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How many megacoulombs of positive charge are in 1.00molof neutral molecular-hydrogen gas (H2)?

Short Answer

Expert verified

The value of the positive charge in the hydrogen molecule is0.19MC.

Step by step solution

01

The given data

  1. Neutral molecular-hydrogen gas (H2) of 1.00molis given.
  2. Avogadro number in one mole of a substance,NA=6.023×1023 molecules
02

Understanding the concept of Coulomb’s law

Using the concept of quantization of charges, we can get the net charge in the given mol of hydrogen gas.

Formula:

The total charge of a molecule respective to the Avogadro number,

Q=NAq,where,q=no.ofelectrons×electroniccharge (i)

03

Calculation of the total positive charge in mega coulombs 

There are two protons (each with charge q = +e) in each molecule.

So, using the formula of equation (i), we can get the positive charge value in mega coulombs as given:

Q=(6.023×1023)(2)(1.60×1019C)=1.90×105C=0.19MC

Hence, the value of the positive charge is0.19MC

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The initial charges on the three identical metal spheres in Fig. 21-24 are the following: sphere A, Q; sphere B, Q/4; and sphere C, Q/2, where Q=2.00×1014C. Spheres Aand Bare fixed in place, with a center-to-center separation of d=1.20m, which is much larger than the spheres. Sphere Cis touched first to sphere Aand then to sphere Band is then removed. What then is the magnitude of the electrostatic force between spheres Aand B?

Question: In Fig. 21-41, three identical conducting spheres form an equilateral triangle of side length d=20.0 cm. The sphere radii are much smaller thand, and the sphere charges are, qA=-2.00nC,qB=-4.00nC,andqc=+8.00nC.

(a) What is the magnitude of the electrostatic force between spheresAandC?

The following steps are then taken:AandBare connected by a thin wire andthen disconnected;Bis grounded by the wire, and the wire is then removed;BandCare connected by the wire and then disconnected. What now are the magnitudes of the electrostatic force (b) between spheresAandCand (c) between spheresBandC?

Identical isolated conducting spheres 1 and 2 have equal charges and are separated by a distance that is large compared with their diameters (Fig. 21-22a). The electrostatic force acting on sphere 2 due to sphere 1 isF.Suppose now that a third identical sphere 3, having an insulating handle and initially neutral, is touched first to sphere 1 (Fig. 21-22b), then to sphere 2 (Fig. 21-22c), and finally removed (Fig. 21-22d). The electrostatic force that now acts on sphere 2 has magnitudeF'. What is the ratioF'/F?

In Fig. 21-39, two tiny conducting balls of identical mass mand identical charge hang from non-conducting threads of length L. Assume that u is so small that tan u can be replaced by its approximate equal, sin u.

(a) Show thatx=(q2L2πε0mg)1/3gives the equilibrium separation xof the balls.

(b) If L=120cm,and, x=5.0cmwhat is|q|?

Question: What would be the magnitude of the electrostatic force between two 1.00Cpoint charges separated by a distance of (a) 1 .00 mand (b) 1.00 kmif such point charges existed (they do not) and this configuration could be set up?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free