Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Two tiny, spherical water drops, with identical charges of-1.00×10-16C, have a center-to-center separation of 1.00 cm. (a) What is the magnitude of the electrostatic force acting between them? (b) How many excess electrons are on each drop, giving it its charge imbalance?

Short Answer

Expert verified
  • a)The magnitude of the electrostatic force acting between them is9×10-19N
  • b) There are excess electrons on each drop.

Step by step solution

01

The given data 

  • a.Charges of the identical water drops,q=-1.00×10-16C
  • b. The separation between the water drops,r=1cm1m100cm=0.01m
02

Understanding the concept of Coulomb’s law 

Using the concept of Coulomb's law, we can find the magnitude of the required force between the particles. Again, the number of electrons can be found by dividing the net charge by the value of the electronic charge.

Formulae:

The magnitude of the electrostatic force between any two particles,

F=Kq1q2r2 (1)

The number of electrons present,

n=q/e (2)

03

a) Calculation of the magnitude of the force

Using the given data in equation (1), we can get the magnitude of the force given as:

F=9×109N.m2C21.00×10-16C20.01m2=9×10-19N

Hence, the value of the force is9×10-19N

04

b) Calculation of the number of excess electrons

If n is the number of excess electrons (of charge –e each) on each drop then the number of excess electrons can be given using equation (2) as follows:

n=1.00×10-16C1.60×10-19C=625

Hence, the value of the excess electrons is 625

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The charges of an electron and a positron are -eand+e. The mass of each is9.11×1031 kg.What is the ratio of the electrical force to the gravitational force between an electron and a positron?

Question: In Fig. 21-40, four particles are fixed along anxaxis, separated bydistances -2.00. The charges areq1=+2e,q2=-e,q3=+e,andq4=+4e, withe=1.60×10-19C. In unit-vector notation, what is the net electrostatic force on (a) particle 1 and (b) particle 2 due to the other particles?

Figure 21-18 shows four situations in which particles of charge +qor -qare fixed in place. In each situation, the particles on the xaxis are equidistant from the yaxis. First, consider the middle particle in situation 1; the middle particle experiences an electrostatic force from each of the other two particles. (a) Are the magnitudes Fof those forces the same or different? (b) Is the magnitude of the net force on the middle particle equal to, greater than, or less than 2F? (c) Do the xcomponents of the two forces add or cancel? (d) Do their ycomponents add or cancel? (e) Is the direction of the net force on the middle particle that of the canceling components or the adding components? (f) What is the direction of that net force? Now consider the remaining situations: What is the direction of the net force on the middle particle in (g) situation 2, (h) situation 3, and (i) situation 4? (In each situation, consider the symmetry of the charge distribution and determine the canceling components and the adding components.)

Question: (a) Explain what happens to the balls of Problem 42 if one of them is discharged (loses its charge qto, say, the ground). (b) Find the new equilibrium separation x, using the given values of Land mand the computed value of |q|.

In Fig. 21-15, a central particle of charge-qis surrounded by two circular rings of charged particles. What are the magnitude and direction of the net electrostatic force on the central particle due to the other particles? (Hint:Consider symmetry.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free