Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Four 18.0 Ω resistors are connected in parallel across a 25.0 V ideal battery. What is the current through the battery?

Short Answer

Expert verified

Answer

The value of the current isI=5.56A .

Step by step solution

01

Write the given data:

  1. The value of each resistor isR=18.0Ω
  2. The potential of the battery isV=25.0V
02

Determine the concept

Use the concept of Ohm’s law and the equivalent resistance of the parallel circuit. First, find the equivalent resistance and then, using that value in Ohm’s law formula, find the current through the battery.

Write the formula for the Ohm’s law and the equivalent resistance as:

V=IR1Req=1R1+1R2+1R3+1R4

03

Calculate the current through the battery  

First, calculate the equivalent resistance as follows:

1Req=118+118+118+118=4181Req=418Req=184Req=4.5Ω

Using this value in Ohm’s law formula and solve as:

V=IRI=VRI=25.04.50I=5.56A

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 27-82, an ideal battery of emf ε=12.0Vis connected to a network of resistancesR1=12.0Ω, R2=12.0Ω,R3=4.0Ω,R4=3.00ΩandR5=5.00Ω. What is the potential difference across resistance 5?

The figure shows a section of a circuit. The resistances are R1=2.0Ω , R2=4.0Ωand R3=6.0Ω, and the indicated current is I=6.0A . The electric potential difference between points A and B that connect the section to the rest of the circuit is VAVB=78V . (a) Is the device represented by “Box” absorbing or providing energy to the circuit, and (b) At what rate?

In the circuit of Fig.27-65, ε=1.2kV, C=6.5μF, R1=R2=R3=0.73. With C completely uncharged, switch S is suddenly closed (att=0). At t=0, what are (a) current i1in resistor 1, (b) currenti2in resistor 2, and (c) currenti3in resistor 3? At t=(that is, after many time constants), what are (d) i1, (e)i2, and (f) i3? What is the potential differenceV2across resistor 2 at (g) t=0and (h) t=? (i) SketchV2versustbetween these two extreme times.

Two identical batteries of emf ε=12.0Vand internal resistance r=0.200Ωare to be connected to an external resistanceR , either in parallel (Figure a) or in series (Figure b). (a) If ,R=2.00r whatis the current in the external resistance in the parallel arrangement? (b) If R=2.00r,what is the current iin the external resistance in the series arrangements? (c) For which arrangement isigreater? (d) IfR=r/2.00 , what is in the external resistance in the parallel? (e) If R=r/2.00, what is i in the external resistance in the series arrangements? (f) For which arrangement is i greater now?

A resistorR1is wired to a battery, then resistorR2is added in series. Are

(a) the potential difference acrossR1and

(b) the currenti1throughR1now more than, less than, or the same as previously?

(c) Is the equivalent resistanceR1ofR1andR2more than, less than, or equal toR1?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free