Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A total resistance of 3.00 Ω is to be produced by connecting an unknown resistance to a 12.0 Ω resistance.

  1. What must be the value of the unknown resistance, and
  2. (b) Should it be connected in series or in parallel?

Short Answer

Expert verified
  1. The value of the unknown resistance isR'=4.00Ω
  2. The unknown resistance should be connected in parallel.

Step by step solution

01

Given

Req=3.00ΩR=12.0Ω

02

Determining the concept

It can be predicted whether the unknown resistance is connected parallel or series from the given values. Then using the formula for corresponding equivalent resistance, findthe value of the unknown resistance.

Formulae are as follow:

1Req=1R+1R'

Where, R is resistance.

03

(a) determining the value of the unknown resistance

Let the unknown resistance connected be R’.

From the given values, we can write thatReq<R.

This implies that the unknown resistance is connected in parallel.

Hence,

1Req=1R+1R'Req=RR'R+R'3=12R'12+R'36+3R'=12R'R'=4.00Ω

Hence, the value of the unknown resistance isR'=4.00Ω

04

(a) Determining the unknown resistance should be connected in series or in parallel

From part a),

it can be concluded that the unknown resistance should be connected in parallel.

Hence, the unknown resistance should be connected in parallel.

Therefore, by using the formula for corresponding equivalent resistance, unknown resistance can be determined.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 27-53, the resistors have the values R1=7.00Ω, R2=12.00Ω, and R3=4.00Ω, and the ideal battery’s emf isε=24.0V. For what value of R4will the rate at which the battery transfers energy to the resistors equal (a)60.0 W, (b) the maximum possible rate Pmax, and (c) the minimum possible rate Pmin? What are (d)Pmaxand (e)Pmin?

In Fig. 27-19, a circuit consists of a battery and two uniform resistors, and the section lying along an xaxis is divided into five segments of equal lengths.

(a) Assume thatR1=R2and rank the segments according to the magnitude of the average electric field in them, greatest first.

(b) Now assume thatR1>R2and then again rank the segments.

(c) What is the direction of the electric field along the xaxis?

Figure shows a circuit of four resistors that are connected to a larger circuit. The graph below the circuit shows the electric potential V(x) as a function of position xalong the lower branch of the circuit, through resistor 4; the potential VAis 12.0 V. The graph above the circuit shows the electric potential V(x) versus position x along the upper branch of the circuit, through resistors 1, 2, and 3; the potential differences areΔVB2.00 V andΔVC5.00 V. Resistor 3 has a resistance of 200 Ω. What is the resistance of (a) Resistor 1 and (b) Resistor 2?

The figure shows a section of a circuit. The resistances are R1=2.0Ω , R2=4.0Ωand R3=6.0Ω, and the indicated current is I=6.0A . The electric potential difference between points A and B that connect the section to the rest of the circuit is VAVB=78V . (a) Is the device represented by “Box” absorbing or providing energy to the circuit, and (b) At what rate?

A solar cell generates a potential difference of 0.10Vwhen a500 resistor is connected across it, and a potential difference of 0.15Vwhen a 1000resistor is substituted.

(a) What is the internal resistance?

(b) What is the emf of the solar cell?

(c) The area of the cell is5.0cm2 , and the rate per unit area at which it receives energy from light is2.0mW/cm2 .What is the efficiency of the cell for converting light energy to thermal energy in the1000 external resistor?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free