Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Cap-monster maze.In Fig. 27-22, all the capacitors have a capacitance of60μC, and all the batteries have an emf of 10 V. What is the charge on capacitor C? (If you can find the proper loop through this maze, you can answer the question with a few seconds of mental calculation).

Short Answer

Expert verified

The charge on capacitor C is60μC.

Step by step solution

01

Step 1: Given

V=10VC=6.0μF

02

Determining the concept

Here, use the formula for the charge in terms of the voltage and the capacitor. When the capacitors are connected in series with battery, voltage remains same through the capacitors.

Formulae are as follow:

q=CV

Where, C is capacitance,V is potential difference, q is charge

03

Determining the charge on capacitor C

Consider the loop as shown in figure 27-22 in which the capacitor C is connected in series with the battery shown by the path in red.

So, the voltage across capacitor C is 10 V

Now, the charge is as follow,

q=CVq=6.0×10q=60μC

Hence, the charge on capacitor C is60μC

Therefore, first find the voltage through the capacitors. From that, find the charge through the capacitors.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the circuit of Fig.27-65, ε=1.2kV, C=6.5μF, R1=R2=R3=0.73. With C completely uncharged, switch S is suddenly closed (att=0). At t=0, what are (a) current i1in resistor 1, (b) currenti2in resistor 2, and (c) currenti3in resistor 3? At t=(that is, after many time constants), what are (d) i1, (e)i2, and (f) i3? What is the potential differenceV2across resistor 2 at (g) t=0and (h) t=? (i) SketchV2versustbetween these two extreme times.

(a) In electron-volts, how much work does an ideal battery with a 12.0 V emf do on an electron that passes through the battery from the positive to the negative terminal? (b) If 3.40×1018electrons pass through each second, what is the power of the battery in watts?

In Fig. 27-25, the ideal batteries have emfs ε1=12vand ε2=6.0v. What are (a) the current, the dissipation rate in (b) resistor 1?(4Ω)And (c) resistor 2 (8Ω), and the energy transfer rate in (d) battery 1 and (e) battery 2? Is energy being supplied or absorbed by (f) battery 1 and (g) battery 2?

In Fig. 27-53, , R2=R3=50.0 Ω, R4=75.0 Ω, and the ideal battery has emf. ε=6.00 V (a) What is the equivalent resistance? What is iin (b) resistance 1, (c) resistance 2, (d) resistance 3, and (e) resistance4?

Question: A controller on an electronic arcade game consists of a variable resistor connected across the plates of a0.220μFcapacitor. The capacitor is charged to 5.00 V, then discharged through the resistor. The time for the potential difference across the plates to decrease to 0.800 Vis measured by a clock inside the game. If the range of discharge times that can be handled effectively is from10.0μsto 6.00 ms, what should be the (a) lower value and (b) higher value of the resistance range of the resistor?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free