Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider a rocket that is in deep space and at rest relative to an inertial reference frame. The rocket’s engine is to be fired for a certain interval. What must be the rocket’s mass ratio (ratio of initial to final mass) over that interval if the rocket’s original speed relative to the inertial frame is to be equal to (a) the exhaust speed (speed of the exhaust products relative to the rocket) and (b)2.0times the exhaust speed?

Short Answer

Expert verified

a) The rocket’s mass ratio when the rocket’s original speed is equal to the exhaust speed,MiMf=2.7

b) The rocket’s mass ratio when the rocket’s original speed is 2.0 times the exhaust speed, MiMf=.47

Step by step solution

01

Listing the given quantities

The initial velocity of rocket,Vi=0m/s

02

Understanding the concept of law of conservation of momentum

Here, we can use the second rocket equation to calculate the mass ratio in both cases.

Formula:

vf-vi=vrel×InMiMf

03

Explanation

We have, the second rocket equation as,

vf-vi=vrel×InMiMf

Here,vfis the original speed of rocket relative to the inertial frame of reference.

Andvrelis the exhaust speed of rocket

So, substituting the value ofviand rearranging above equation for mass ratio, we get

MiMf=expvfvrel

04

(a) Calculation of the rocket’s mass ratio when the rocket’s original speed is equal to the exhaust speed

When,vf=2×vrel the above equation become,

role="math" localid="1661250600364" MiMf=exp27.4

Hence, the rocket’s mass ratio when the rocket’s original speed is equal to the exhaust speedMiMf=7.4

05

 Step 5: (b) Calculation of the rocket’s mass ratio when the rocket’s original speed is equal to double the exhaust speed

When vf=2×vrelthe above equation become,

MiMf=exp27.4

Hence, the rocket’s mass ratio when the rocket’s original speed is times the exhaust speed, MiMf=7.4

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Basilisk lizards can run across the top of a water surface (Figure 9-52). With each step, a lizard first slaps its foot against the water and then pushes it down into the water rapidly enough to form an air cavity around the top of the foot. To avoid having to pull the foot back up against water drag in order to complete the step, the lizard withdraws the foot before water can flow into the air cavity. If the lizard is not to sink, the average upward impulse on the lizard during this full action of slap, downward push, and withdrawal must match the downward impulse due to the gravitational force. Suppose the mass of a basilisk lizard is 9.00 g, the mass of each foot is 3.00 g , the speed of a foot as it slaps the water is 1.50 m/s , and the time for a single step is 0.600 s .(a) What is the magnitude of the impulse on the lizard during the slap? (Assume this impulse is directly upward.) (b) During the 0.600 sduration of a step, what is the downward impulse on the lizard due to the gravitational force? (c) Which action, the slap or the push, provides the primary support for the lizard, or are they approximately equal in their support?

An old Chrysler with mass 2400 kg is moving along a straight stretch of road at 80 km/h. It is followed by a Ford with mass 1600 kgmoving at 60 km/h. How fast is the center of mass of the two cars moving?

A stone is dropped att=0. A second stone, with twice the mass of the first, is dropped from the same point atrole="math" localid="1654342252844" t=100ms. (a) How far below the release point is the centre of mass of the two stones att=300ms? (Neither stone has yet reached the ground.) (b) How fast is the centre of mass of the two stone systems moving at that time?

The free-body diagrams in Fig. 9-27 give, from overhead views, the horizontal forces acting on three boxes of chocolates as the boxes move over a frictionless confectioner’s counter. For each box, is its linear momentum conserved along the x-axis and the y-axis?

Speed amplifier.In Fig. 9-75, block 1 of mass m1 slides along an x axis on a frictionless floor with a speed of v1i=4.00m/s.Then it undergoes a one-dimensional elastic collision with stationary block 2 of mass m2=0.500m1. Next, block 2 undergoes a one-dimensional elastic collision with stationary block 3 of mass m3=0.500m2. (a) What then is the speed of block 3? Are (b) the speed, (c) the kinetic energy, and (d) the momentum of block 3 is greater than, less than, or the same as the initial values for block 1?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free