Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In tae-kwon-do, a hand is slammed down onto a target at a speed of13 m/sand comes to a stop during the 5.0 mscollision. Assume that during the impact the hand is independent of the arm and has a mass of0.70 kg . What are the magnitudes of the (a) Impulse and (b) Average force on the hand from the target?

Short Answer

Expert verified
  1. The magnitude of the impulse on the hand from the target,J=9.1N·s.
  2. The magnitude of the average force on the hand from the target, Favg=1.8×103N.

Step by step solution

01

Understanding the given information

The mass of hand,m=0.70kg.

The speed of hand is,v1=13m/s.

The time of contact, t=5.0ms1×10-3s1ms=5.0×10-3s.

02

Concept and formula used in the given question

We can use the equation of impulse-momentum theorem to calculate the impulse, and then we can use this value of impulse in the equation of average force to calculate its value.

J=PP=mv2-v1J=Favg.t

03

(a) Calculation for the impulse

The equation of the impulse-momentum theorem is,

J=P=m×v2-v1=0.70kg×0m/s-13m/s=-9.1N·s

So, the magnitude of impulse is,

J=9.1N·s

04

(b) Calculation for the Average force on the hand from the target

We have,

J=Favg×t

So,

Favg=Jt=9.1N·s5×10-3s=1.8×103N

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A small ball of mass m is aligned above a larger ball of mass M=0.63 kg (with a slight separation, as with the baseball and basketball of Fig. 9-68a), and the two are dropped simultaneously from a height of h=1.8 m. (Assume the radius of each ball is negligible relative to h.) (a) If the larger ball rebounds elastically from the floor and then the small ball rebounds elastically from the larger ball, what value ofm results in the larger ball stopping when it collides with the small ball? (b) What height does the small ball then reach (Fig.9-68b)?

Ricardo, of mass 80 kg , and Carmelita, who is lighter, is enjoying Lake Merced at dusk in a30 kgcanoe. When the canoe is at rest in the placid water, they exchange seats, which are 3.0 mapart and symmetrically located with respect to the canoe’s center. If the canoe moves 40 cmhorizontally relative to a pier post, what is Carmelita’s mass?

Figure 9-24 shows an overhead view of four particles of equal mass sliding over a frictionless surface at constant velocity. The directions of the velocities are indicated; their magnitudes are equal. Consider pairing the particles. Which pairs form a system with a center of mass that (a) is stationary, (b) is stationary and at the origin, and (c) passes through the origin?

In Fig. 9-79, an 80 kgman is on a ladder hanging from a balloon that has a total mass of 320 kg(including the basket passenger). The balloon is initially stationary relative to the ground. If the man on the ladder begins to climb at 2.5m/srelative to the ladder, (a) in what direction and (b) at what speed does the balloon move? (c) If the man then stops climbing, what is the speed of the balloon?

A man (weighing915N) stands on a long railroad flatcar (weighing2415N) as it rolls at 18.2msin the positive direction of an xaxis, with negligible friction, then the man runs along the flatcar in the negative xdirection at4.00msrelative to the flatcar. What is the resulting increase in the speed of the flatcar?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free