Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 140 g ball with speed 7.8ms strikes a wall perpendicularly and rebounds in the opposite direction with the same speed. The collision lasts 3.80 ms .What are the magnitudes of the (a) impulse and (b) average force on the wall from the ball during the elastic collision?

Short Answer

Expert verified
  1. Magnitude of impulse,Jis2.18kg.ms.
  2. Magnitude of the average force on the wall from the ball, F is 575 N .

Step by step solution

01

Understanding the given information

  1. Mass of the ball, m = 140 g.
  2. Speed of the ball,vi=7.8ms.
  3. Time of collision, t = 3.80 ms .
02

Concept and formula used in the given question

Use the concept of impulse. Using the equation of impulse and find the impulse and then using the same equation of time involved, then find the average force. The equations are given below.

J=mVFt=mV

03

(a) Calculate the magnitude of impulse

Magnitude of impulse:

Ball rebounds back with same velocity, we can write,

J=0.14(-v-(v)=0.14×2v=0.14×2×7.8=-2.18kg.ms

Magnitude of impulse is J=2.18kg.ms

04

(b) Calculate the magnitude of impulse average force on the wall from the ball during the elastic collision

Magnitude of the average force on the wall from the ball.

Consider the formulas J=mVandFt=mV.

Use value of J here and solve as:

F(3.80×10-3)=mVF=2.183.80×10-3F=574.7NF575N

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Pancake collapse of a tall building. In the section of a tallbuilding shown in Fig. 9-71a, the infrastructureof any given floor Kmust support the weight Wof allhigher floors. Normally the infrastructureis constructed with asafety factor sso that it can withstandan even greater downward force of sW. If, however, the support columns between Kand Lsuddenly collapse and allow the higher floors to free-fall together onto floorK(Fig. 9-71b), the force in the collision can exceed sWand, after a brief pause, cause Kto collapse onto floor J, which collapses on floor I, and so on until the ground is reached. Assume that the floors are separated by d=4.0 mand have the same mass. Also assume that when the floors above Kfree-fall onto K, the collision last 1.5 ms. Under these simplified conditions, what value must the safety factor sexceed to prevent pancake collapse of the building?

A ball having a mass of 150 g strikes a wall with a speed of 5.2 m/sand rebounds with only 50%of its initial kinetic energy. (a) What is the speed of the ball immediately after rebounding? (b) What is the magnitude of the impulse on the wall from the ball? (c) If the ball is in contact with the wall for 7.6 ms, what is the magnitude of the average force on the ball from the wall during this time interval?

A rocket that is in deep space and initially at rest relative to an inertial reference frame has a mass of 2.55×105kg, of which 1.81×105kgis fuel. The rocket engine is then fired for 250 swhile fuel is consumed at the rate of 480kg/s. The speed of the exhaust products relative to the rocket is. (a) What is the rocket’s thrust? After the 250 sfiring, what are (b) the mass and (c) the speed of the rocket?

A2100 KGtruck travelling north at 41 km/h turns east and accelerates to 51 km/h. (a) What is the change in the truck’s kinetic energy? What are the (b) Magnitude and (c) Direction of the change in its momentum?

Figure 9-28 shows four groups of three or four identical particles that move parallel to either the x-axis or the y-axis, at identical speeds. Rank the groups according to center-of-mass speed, greatest first.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free