Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You are asked to construct a capacitor having a capacitance near1nFand a breakdown potential in excess of 10000 V . You think of using the sides of a tall Pyrex drinking glass as a dielectric, lining the inside and outside curved surfaces with aluminum foil to act as the plates. The glass is 15 cm tall with an inner radius of 3.6 cmand an outer radius of3.8 cm(a) What is the capacitance? (b) What is the breakdown potential of this capacitor?

Short Answer

Expert verified

a) The value of the capacitance is 0.73 nF .

b) The breakdown potential of this capacitor is 28 kV .

Step by step solution

01

The given data

a) Near capacitance, C = 1nF

b) Dielectric constant of Pyrex, k = 4.7

c) Inner radius of the glass, a = 3.6 cm

d) Outer radius of the glass, b = cm

e) Length of the glass, L = 15 cm

f) Present excess voltage that is breakdown voltage,VB=104V

g) Dielectric strength of Pyrex, E=14×106V/m

02

Understanding the concept of the capacitance

The formula for the capacitance of a cylindrical capacitor can be used to find the required capacitance with the given geometry. Now, for the breakdown voltage, the dielectric strength of the material is taken. This determines the breakdown potential within the inner and outer radius of the cylinder.

Formulae:

The capacitance formula of a cylindrical surface with dielectric filled,

C=k.2πo,0Llnba …(i)

The electric field strength relation to the voltage, E = V/d …(ii)

Where,

ε0=8.85×10-12C2N.m2 is permittivity of free space

03

(a) Calculation of the capacitance

Using the given data in equation (i), we can get the capacitance value between the plates with Pyrex field as follows:

C1=4.7×2π×8.85×10-12C2N,m2×15×10-2mln3.8cm3.6cm=0.73nF

Hence, the value of the capacitance is 0.73nF.

04

(b) Calculation of breakdown voltage

For Pyrex glass dielectric strength is14×106V/m.

Breakdown potential of capacitor is given using equation (ii) as follows:

Vb=14×106V/m.3.8-3.6×10-2m=28kV

Hence, the value of the voltage is 28 kV .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You have many 2.0μFcapacitors, each capable of withstanding 200 Vwithout undergoing electrical breakdown (in which they conduct charge instead of storing it). How would you assemble a combination having an equivalent capacitance of (a)0.40μFand (b)1.2μF, each combination capable of withstanding 1000 V?

In figure, how much charge is stored on the parallel plate capacitors by the 12.0 Vbattery ? One is filled with air, and the other is filled with a dielectric for which k = 3.00; both capacitors have a plate area of 5.00×10-3m2and a plate separation of 2.00 mm.

In Fig. 25-29, find the equivalent capacitance of the combination. Assume that C1=10.0μF, C2=5.00μFandC3=4.00μF

In Fig. 25-36, the capacitances areC1=1.0μFand C2=3.0μF, and both capacitors are charged to a potential difference ofV=100Vbut with opposite polarity as shown. Switches S1 and S2 are now closed. (a) What is now the potential difference between points aand b? What now is the charge on (b) capacitor 1 and (c) capacitor 2?

Fig.25-39 represents two air-filled cylindrical capacitors connected in series across a battery with potential V = 10 VCapacitor 1 has an inner plate radius of 5.0mm an outer plate radius of 1.5 cmand a length of 5.0 cm.Capacitor 2 has an inner plate radius of 2.5mman outer plate radius of 1.0 cmand a length of 9.0 cm. The outer plate of capacitor 2 is a conducting organic membrane that can be stretched, and the capacitor can be inflated to increase the plate separation. If the outer plate radius is increased to 2.5 cmby inflation, (a) how many electrons move through point P and (b) do they move toward or away from the battery?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free