Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider an atom with two closely spaced excited states A and B. If the atom jumps to ground state from A or from B, it emits a wavelength of 500 nm or 510 nm, respectively. What is the energy difference between states A and B?

Short Answer

Expert verified

The energy difference between states A and B is 0.049 eV .

Step by step solution

01

The given data

  1. Wavelength of the emitted atom when it jumps from A,λA=500nm
  2. Wavelength of the emitted atom when it jumps from B,λB=510nm
02

Understanding the concept of plank’s relation:

Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the magnetic frequency of the photon and thus, equally, equates to the wavelength of the wave. When the frequency of photons is high, its potential is high.

From Planck's relation, get the individual energies of each exciting case that is the excitation of the atom either from A or B. Now, the difference value of these individual energies is the required energy difference.

Formula:

The energy of the photon due to Planck’s relation,

E=hcλ ….. (1)

Here, consider the known data below.

The Plank’s constant is,

h=6.63×10-34J.s=6.242×1018×6.63×10-34eV.s=41.384×10-16eV.s

The speed of light is,

c=3×108m/s=3×108×109nm/s=3×1017nm/s

03

Calculation of the energy difference:

Using the given data and equation (1), the energy difference between the two given states A and B can be calculated as follows:

E=hcλA-hcλB=hc1λA-1λBE=41.384×10-16eV.s×3×1017nm/s1500nm-1510nm=1240eV.nm0.002nm-0.0019nm=1240eV.nm4×10-5nm=0.049eV

Hence, the value of the energy difference is 0.049 eV .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The wavelength of the Kαline from iron is 193 pm. What is the energy difference between the two states of the iron atom that give rise to this transition?

A tungsten (Z=74) target is bombarded by electrons in an x-ray tube. The K,L and M energy levels for tungsten (compare Fig. 40-15) have the energies 69.5 keV,11.3 keV, and 2.30 keV respectively. (a) What is the minimum value of the accelerating potential that will permit the production of the characteristickα andkβ lines of tungsten? (b) For this same accelerating potential, what is λmin? What are the (c) kαand (d)kβ wavelengths?

On which quantum numbers does the energy of an electron depend in (a) a hydrogen atom and

(b) a vanadium atom?

For the situation of Problem 21, what multiple of h2/8mL2gives the energy of (a) the first excited state, (b) the second excited state, and (c) the third excited state of the system of seven electrons? (d) Construct an energy-level diagram for the lowest four energy levels of the system.

A molybdenum (Z = 42 ) target is bombarded with 35.0keV electrons and the x-ray spectrum of Fig. 40-13 results. The lines KβandKαwavelengths are 63.0 and 71.0pm, respectively. What photon energy corresponds to the (a) Kβand(b) Kαradiation? The two radiations are to be filtered through one of the substances in the following table such that the substance absorbs the Kβ line more strongly than theKα line. A substance will absorb radiation x1 more strongly than it absorbs radiationx2 if a photon of x1 has enough energy to eject an electron Keiectron from an atom of the substance but a photon of does not. The table gives the ionization energy of the Kelectron in molybdenum and four other substances. Which substance in the table will serve (c) best and (d) second best as the filter?


See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free