Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the cutoff wavelength in the continuous x-ray spectrum from any target is given by λmin=1240/V, where is the potential difference (in kilovolts) through which the electrons are accelerated before they strike the target.

Short Answer

Expert verified

It is shown that the cutoff wavelength in the continuous x-ray spectrum from any target is given by λmin=1240/V.

Step by step solution

01

The given data

A continuous x-ray spectrum from any target is produced due to the striking of the electrons that are accelerating before the strike.

02

Understanding the concept of Plank’s relation:

Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the magnetic frequency of the photon and thus, equally, equates to the wavelength of the wave. When the frequency of photons is high, its potential is high.

Using the energy relation of Planck's equation and the energy difference created by the accelerating electron due to generated potential difference, to get the required equation of the cutoff wavelength in the continuous x-ray spectrum from any target.

Formulae:

The energy of the photon due to Planck’s relation,

ΔE=hcλ ….. (1)

Consider the known data below.

The Plank’s constant is,

h=6.63×10-34J.s=6.242×1015×6.63×10-34keV.s=41.384×1019keV.s

The speed of light is,

c=3×108m/s=3×108×1012pm/s=3×1020pm/s

The energy generated due to accelerating potential,

ΔE=eV ….. (2)

Here,e is the charge and V is the potential.

03

Calculation of the cut-off wavelength:

As the accelerating electrons strike the target, they generate the same energy difference on the target as due to the accelerating potential. Thus, using equations (1) and (2), the cutoff wavelength in the continuous x-ray spectrum from any target is given by:

eV=hcλmin

λmin=hceV=41.384×10-19keV.s3×1020pm/seV=1240keV.pmeV=1240pmV

Here, the potential V is in the kilovolts.

Hence, it is proved that the wavelength value is λmin=1240V.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A rectangular corral of widths Lx=Land Ly=Lcontains seven electrons. What multiple ofh2/8mL2 gives the energy of the ground state of the system? Assume that the electrons do not interact with one another, and do not neglect spin.

Suppose that the electron had no spin and that the Pauli exclusion principle still held .Which, if any, of the present noble gases would remain in that category?

For the situation of Problem 21, what multiple of h2/8mL2gives the energy of (a) the first excited state, (b) the second excited state, and (c) the third excited state of the system of seven electrons? (d) Construct an energy-level diagram for the lowest four energy levels of the system.

A molybdenum (Z = 42 ) target is bombarded with 35.0keV electrons and the x-ray spectrum of Fig. 40-13 results. The lines KβandKαwavelengths are 63.0 and 71.0pm, respectively. What photon energy corresponds to the (a) Kβand(b) Kαradiation? The two radiations are to be filtered through one of the substances in the following table such that the substance absorbs the Kβ line more strongly than theKα line. A substance will absorb radiation x1 more strongly than it absorbs radiationx2 if a photon of x1 has enough energy to eject an electron Keiectron from an atom of the substance but a photon of does not. The table gives the ionization energy of the Kelectron in molybdenum and four other substances. Which substance in the table will serve (c) best and (d) second best as the filter?


In 1911, Ernest Rutherford modeled an atom as being a point of positive charge surrounded by a negative charge -ze uniformly distributed in a sphere of radius centered at the point. At distance within the sphere, the electric potential is V=Ze4πε0(1r-32R+r22R3).

  1. From this formula, determine the magnitude of the electric field for0rR. What are the (b) electric field and (c) potential forrR?
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free