Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Seven electrons are trapped in a one-dimensional infinite potential well of width L. What multiple of h2/8mL2 gives the energy of the ground state of this system? Assume that the electrons do not interact with one another, and do not neglect spin.

Short Answer

Expert verified

The multiple of h2/8mL2that gives the energy of the ground state of this system is 44.

Step by step solution

01

The given data:

There are seven electrons trapped in a one-dimensional infinite potential well of width L .

02

Understanding the concept of Pauli’s exclusion principle

Pauli's exclusive principle states that no two electrons in the same atom can have the same values in all four of their quantum numbers.

Using the concept of Pauli's exclusion principle of an infinite potential well, distribute the electrons accordingly to get the smallest value of energy in the ground state of the system. Thus, the required total energy due to all these electrons that further give the multiple of h2/8mL2.

Formula:

The energy of nthstate of a ground state of the system is,

En=n2h28mL2 ….. (1)

Here, n is the number of state, h is the Plank’s constant, m is the mass, and L is the width.

03

Calculation of the multiple value of h2/8mL2 :

To get the lowest possible total energy, two electrons are filled in each state of n=1,2,3, while the rest of one electron fills the state of n = 4.

Now using the n values in energy equation (1), the total energy of the ground state of the system is given as below.

role="math" localid="1661497763518" Eground=2E1+2E2+2E3+E4=2h28mL2+222h28mL2+232h28mL2+242h28mL2=2+8+18+16h28mL2=44h28mL2

Hence, the value of the multiple is 44.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Fig. 40-13, the x-rays shown are produced when 35.0 keV electrons strike a molybdenum (Z = 42) target. If the accelerating potential is maintained at this value but a silver (Z = 47) target is used instead, what values of (a)λmin, (b) the wavelength of the Kαline, and (c) the wavelength of the Kβ line result? The K,L and M atomic x-ray levels for silver (compare Fig. 40-15) are 25.51, 3.56 and 0.53 keV.

Suppose that a hydrogen atom in its ground state moves 80 cm through and perpendicular to a vertical magnetic field that has a magnetic field gradientdBdz=1.6×102T . (a) What is the magnitude of force exerted by the field gradient on the atom due to the magnetic moment of the atom’s electron, which we take to be Bohr magnetron? (b) What is the vertical displacement of the atom in the 80cm of travel if its speed is 1.2×105m/s?

If orbital angular momentum is measured along, say, a z-axis to obtain a value for Lz, show thatrole="math" localid="1661497092782" (Lx2+Ly2)1/2=[I(I+1)-mI2]1/2ħ is the most that can be said about the other two components of the orbital angular momentum.

Which (if any) of the following are essential for laser action to occur between two energy levels of an atom?

(a) There are more atoms in the upper level than in the lower.

(b) The upper level is metastable.

(c) The lower level is metastable.

(d) The lower level is the ground state of the atom.

(e) The lasing medium is a gas.

A recently named element is darmstadtium (Ds), which has electrons. Assume that you can put 110 the electrons into the atomic shells one by one and can neglect any electron-electron interaction. With the atom in the ground state, what is the spectroscopic notation for the quantum number for the last electron?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free