Chapter 8: Problem 15
Superheated steam at \(8 \mathrm{MPa}\) and \(480^{\circ} \mathrm{C}\) leaves the steam generator of a vapor power plant. Heat transfer and frictional effects in the line connecting the steam generator and the turbine reduce the pressure and temperature at the turbine inlet to \(7.6 \mathrm{MPa}\) and \(440^{\circ} \mathrm{C}\), respectively. The pressure at the exit of the turbine is \(10 \mathrm{kPa}\), and the turbine operates adiabatically. Liquid leaves the condenser at \(8 \mathrm{kPa}, 36^{\circ} \mathrm{C}\). The pressure is increased to \(8.6 \mathrm{MPa}\) across the pump. The turbine and pump isentropic efficiencies are \(88 \%\). The mass flow rate of steam is \(79.53 \mathrm{~kg} / \mathrm{s}\). Determine (a) the net power output, in \(\mathrm{kW}\). (b) the thermal efficiency. (c) the rate of heat transfer from the line connecting the steam generator and the turbine, in \(\mathrm{kW}\). (d) the mass flow rate of condenser cooling water, in \(\mathrm{kg} / \mathrm{s}\), if the cooling water enters at \(15^{\circ} \mathrm{C}\) and exits at \(35^{\circ} \mathrm{C}\) with negligible pressure change.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.