Chapter 6: Problem 82
Steam enters a horizontal \(15-\mathrm{cm}\)-diameter pipe as a saturated vapor at 5 bar with a velocity of \(10 \mathrm{~m} / \mathrm{s}\) and exits at \(4.5\) bar with a quality of \(95 \%\). Heat transfer from the pipe to the surroundings at \(300 \mathrm{~K}\) takes place at an average outer surface temperature of \(400 \mathrm{~K}\). For operation at steady state, determine (a) the velocity at the exit, in \(\mathrm{m} / \mathrm{s}\). (b) the rate of heat transfer from the pipe, in \(\mathrm{kW}\). (c) the rate of entropy production, in \(\mathrm{kW} / \mathrm{K}\), for a control volume comprising only the pipe and its contents. (d) the rate of entropy production, in \(\mathrm{kW} / \mathrm{K}\), for an enlarged control volume that includes the pipe and enough of its immediate surroundings so that heat transfer from the control volume occurs at \(300 \mathrm{~K}\). Why do the answers of parts (c) and (d) differ?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.