Chapter 6: Problem 51
An electric motor operating at steady state draws a current of 10 amp with a voltage of \(220 \mathrm{~V}\). The output shaft rotates at 1000 RPM with a torque of \(16 \mathrm{~N} \cdot \mathrm{m}\) applied to an external load. The rate of heat transfer from the motor to its surroundings is related to the surface temperature \(T_{\mathrm{b}}\) and the ambient temperature \(T_{0}\) by \(\mathrm{hA}\left(T_{\mathrm{b}}-T_{0}\right)\), where \(\mathrm{h}=100 \mathrm{~W} / \mathrm{m}^{2}\). \(\mathrm{K}, \mathrm{A}=0.195 \mathrm{~m}^{2}\), and \(T_{0}=293 \mathrm{~K}\). Energy transfers are considered positive in the directions indicated by the arrows on Fig. P6.51. (a) Determine the temperature \(T_{\mathrm{b}}\), in \(\mathrm{K}\). (b) For the motor as the system, determine the rate of entropy production, in \(\mathrm{kW} / \mathrm{K}\). (c) If the system boundary is located to take in enough of the nearby surroundings for heat transfer to take place at temperature \(T_{0}\), determine the rate of entropy production, in \(\mathrm{kW} / \mathrm{K}\), for the enlarged system.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.