Chapter 6: Problem 16
A system undergoes a thermodynamic power cycle while receiving energy by heat transfer from an incompressible body of mass \(m\) and specific heat \(c\) initially at temperature \(T_{\mathrm{H}}\). The system undergoing the cycle discharges energy by heat transfer to another incompressible body of mass \(m\) and specific heat \(c\) initially at a lower temperature \(T_{\mathrm{C}}\). Work is developed by the cycle until the temperature of each of the two bodies is the same, \(T^{\prime}\). (a) Develop an expression for the minimum theoretical final temperature, \(T^{\prime}\), in terms of \(m, c, T_{\mathrm{H}}\), and \(T_{\mathrm{C}}\), as required. (b) Develop an expression for the maximum theoretical amount of work that can be developed, \(W_{\max }\), in terms of \(m, c, T_{\mathrm{H}}\), and \(T_{\mathrm{C}}\), as required. (c) What is the minimum theoretical work input that would be required by a refrigeration cycle to restore the two bodies from temperature \(T^{\prime}\) to their respective initial temperatures, \(T_{\mathrm{H}}\) and \(T_{\mathrm{C}} ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.