Chapter 4: Problem 9
Infiltration of outside air into a building through miscellaneous cracks around doors and windows can represent a significant load on the heating equipment. On a day when the outside temperature is \(-18^{\circ} \mathrm{C}, 0.042 \mathrm{~m}^{3} / \mathrm{s}\) of air enters through the cracks of a particular office building. In addition, door openings account for about \(.047 \mathrm{~m}^{3} / \mathrm{s}\) of outside air infiltration. The internal volume of the building is \(566 \mathrm{~m}^{3}\), and the inside temperature is \(22^{\circ} \mathrm{C}\). There is negligible pressure difference between the inside and the outside of the building. Assuming ideal gas behavior, determine at steady state the volumetric flow rate of air exiting the building through cracks and other openings, and the number of times per hour that the air within the building is changed due to infiltration.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.