Chapter 2: Problem 7
A disk-shaped flywheel, of uniform density \(\rho\), outer radius \(R\), and thickness \(w\), rotates with an angular velocity \(\omega\), in \(\mathrm{rad} / \mathrm{s}\). (a) Show that the moment of inertia, \(I=\int_{\text {vol }} \rho r^{2} d V\), can be expressed as \(I=\pi \rho w R^{4} / 2\) and the kinetic energy can be expressed as \(\mathrm{KE}=I \omega^{2} / 2\). (b) For a steel flywheel rotating at 3000 RPM, determine the kinetic energy, in \(\mathrm{N} \cdot \mathrm{m}\), and the mass, in \(\mathrm{kg}\), if \(R=0.38 \mathrm{~m}\) and \(w=0.025 \mathrm{~m}\). (c) Determine the radius, in \(\mathrm{m}\), and the mass, in \(\mathrm{kg}\), of an aluminum flywheel having the same width, angular velocity, and kinetic energy as in part (b).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.