Chapter 12: Problem 28
A device is being designed to separate into components a natural gas consisting of \(\mathrm{CH}_{4}\) and \(\mathrm{C}_{2} \mathrm{H}_{6}\) in which the mole fraction of \(\mathrm{C}_{2} \mathrm{H}_{6}\), denoted by \(y\), may vary from \(0.05\) to \(0.50\). The device will receive natural gas at \(20^{\circ} \mathrm{C}, 1 \mathrm{~atm}\) with a volumetric flow rate of \(100 \mathrm{~m}^{3} / \mathrm{s}\). Separate streams of \(\mathrm{CH}_{4}\) and \(\mathrm{C}_{2} \mathrm{H}_{6}\) will exit, each at \(20^{\circ} \mathrm{C}, 1 \mathrm{~atm}\). Heat transfer between the device and its surroundings occurs at \(20^{\circ} \mathrm{C}\). Ignoring kinetic and potential energy effects, plot versus \(y\) the minimum theoretical work input required at steady state, in \(\mathrm{kW}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.