Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is the relationship of potential energy to conservative force?

Short Answer

Expert verified

The conservative force equals to the negative gradient of the potential energy.

Step by step solution

01

Step 1: Definition of Concept

Potential energy: Potential energy is defined as the work done by an external agent against the action of conservative force in order to displace the object.

02

Explain the relationship of potential energy to a conservative force

The relation between conservative force and potential energy is given as,

F=gradU=U ……………….(1.1)

Here, U is the potential energy.

Since the gradient is given as,

=xi^+yj^+zk^ …………………..(1.2)

From equations (1.1) and (1.2), we get,

F=xi^+yj^+zk^U=Uxi^Uyj^Uzk^

Integrating equation (1.1) over small line element ds,

Fds=Uds=ΔU ……………………(1.3)

Since the work done is given as,

W=Fds ………………………….(1.4)

From equations (1.3) and (1.4), we get,

W=ΔU

This equation states that the work done for the conservative force is equal to the negative of the change in potential energy.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using values from Table 7.1, how many DNA molecules could be broken by the energy carried by a single electron in the beam of an old-fashioned TV tube? (These electrons were not dangerous in themselves, but they did create dangerous x rays. Later model tube TVs had shielding that absorbed x rays before they escaped and exposed viewers.)

How much work is done by the boy pulling his sister 30.0 m in a wagon as shown in Figure 7.36? Assume no friction acts on the wagon.

Figure 7.36 The boy does work on the system of the wagon and the child when he pulls them as shown.

A 75.0-kg cross-country skier is climbing a 3.0º slope at a constant speed of 2.00 m/s and encounters air resistance of 25.0 N. Find his power output for work done against the gravitational force and air resistance.

(b) What average force does he exert backward on the snow to accomplish this?

(c) If he continues to exert this force and to experience the same air resistance when he reaches a level area, how long will it take him to reach a velocity of 10.0 m/s?

How much work does a supermarket checkout attendant do on a can of soup he pushes \(0.600{\rm{ m}}\) horizontally with a force of \(5.00{\rm{ N}}\)? Express your answer in joules and kilocalories.

(a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h?

(b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0 m above its starting point, how much thermal energy was generated by friction?

(c) What is the average force of friction if the hill has a slope 2.5° above the horizontal?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free