Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Calculate the power per square meter reaching Earth’s upper atmosphere from the Sun. (Take the power output of the Sun to be\(4.00 \times {10^{26}}{\rm{ W}}\).)

(b) Part of this is absorbed and reflected by the atmosphere, so that a maximum of\(1.30{\rm{ kW}}/{{\rm{m}}^2}\)reaches Earth’s surface. Calculate the area in\({\rm{k}}{{\rm{m}}^2}\)of solar energy collectors needed to replace an electric power plant that generates\(750{\rm{ MW}}\)if the collectors convert an average of\(2.00\% \)of the maximum power into electricity. (This small conversion efficiency is due to the devices themselves, and the fact that the sun is directly overhead only briefly.) With the same assumptions, what area would be needed to meet the United States’ energy needs\(\left( {1.05 \times {{10}^{20}}{\rm{ J}}} \right)\)? Australia’s energy needs\(\left( {5.4 \times {{10}^{18}}{\rm{ J}}} \right)\)? China’s energy needs\(\left( {6.3 \times {{10}^{19}}{\rm{ J}}} \right)\)? (These energy consumption values are from 2006.)

Short Answer

Expert verified

(a) The power per square meter reaching the Earth’s upper atmosphere is\(1.42{\rm{ kW}}/{{\rm{m}}^2}\).

(b) The area of the solar collector needed to replace an electric power plant is \(28.8{\rm{ k}}{{\rm{m}}^2}\), the area of solar collector to meet the energy demand of United States, Australia and China are \(128076{\rm{ k}}{{\rm{m}}^2}\), \(6576.9{\rm{ k}}{{\rm{m}}^2}\) and \(76538.5{\rm{ k}}{{\rm{m}}^2}\), respectively.

Step by step solution

01

Power 

Power is a scalar quantity which is defined how fast the energy is being used.

Mathematically,

\(P = \frac{E}{T}\)

Here, E is the amount of energy consumed and T is the time.

02

Power per square meter reaching Earth’s upper atmosphere

(a)

The power reaching the earth upper atmosphere is,

\(P = \frac{{{P_{Sun}}}}{{4\pi {r^2}}}\)

Here,\({P_{Sun}}\)is the power output of the Sun\(\left( {{P_{Sun}} = 4.00 \times {{10}^{26}}{\rm{ W}}} \right)\), and r is the distance between the Sun and the Earth\(\left( {r = 149.6 \times {{10}^6}{\rm{ m}}} \right)\).

Putting all known values,

\(\begin{aligned}P &= \frac{{\left( {4.00 \times {{10}^{26}}{\rm{ W}}} \right)}}{{4\pi \times {{\left( {149.6 \times {{10}^9}{\rm{ m}}} \right)}^2}}}\\ &= \left( {1422.28{\rm{ W}}/{{\rm{m}}^2}} \right) \times \left( {\frac{{1{\rm{ kW}}}}{{1000{\rm{ W}}}}} \right)\\ &= 1.42{\rm{ kW}}/{{\rm{m}}^2}\end{aligned}\)

Therefore, the power per square meter reaching the Earth’s upper atmosphere is \(1.42{\rm{ kW}}/{{\rm{m}}^2}\).

03

Area of the solar collector needed

(b)

Since the efficiency of the solar collector is 2% . Therefore, the solar power being converted into electric power is,

\(P' = {P_s} \times 0.02\)

Here,\({P_s}\)is the energy reaches Earth’s surface\(\left( {{P_s} = 1.30{\rm{ kW}}/{{\rm{m}}^2}} \right)\).

Putting all known values,

\(\begin{aligned}P' &= \left( {1.30{\rm{ kW}}/{{\rm{m}}^2}} \right) \times 0.02\\ &= 26{\rm{ W}}/{{\rm{m}}^2}\end{aligned}\)

The electric power plant generates a power of\({P_P} = 750{\rm{ MW}}\). Therefore, the area of solar energy collector to replace this electric power plant is,

\(A = \frac{{{P_P}}}{{P'}}\)

Putting all known values,

\(\begin{aligned}A& = \frac{{750{\rm{ MW}}}}{{26{\rm{ W}}/{{\rm{m}}^2}}}\\ &= \frac{{\left( {750{\rm{ MW}}} \right) \times \left( {\frac{{10{\rm{ W}}}}{{1{\rm{ MW}}}}} \right)}}{{26{\rm{ W}}/{{\rm{m}}^2}}}\\ &= 2.88 \times {10^7}{\rm{ }}{{\rm{m}}^2} \times \left( {\frac{{1{\rm{ k}}{{\rm{m}}^2}}}{{{{10}^6}{\rm{ }}{{\rm{m}}^2}}}} \right)\\ &= 28.8{\rm{ k}}{{\rm{m}}^2}\end{aligned}\)

Therefore, the area of the solar collector needed to replace an electric power plant is \(28.8{\rm{ k}}{{\rm{m}}^2}\).

04

Area of the solar collector to meet the energy demand of United States

The energy consumption of United States in a year is\({E_{US}} = 1.05 \times {10^{20}}{\rm{ J}}\). Therefore, power consumption of United States in a year is,

\({P_{US}} = \frac{{{E_{US}}}}{{1{\rm{ year}}}}\)

Putting all known values,

\(\begin{aligned}{P_{US}} &= \frac{{1.05 \times {{10}^{20}}{\rm{ J}}}}{{\left( {1{\rm{ year}}} \right) \times \left( {\frac{{365{\rm{ day}}}}{{1{\rm{ year}}}}} \right) \times \left( {\frac{{24{\rm{ hr}}}}{{1{\rm{ day}}}}} \right) \times \left( {\frac{{3600{\rm{ s}}}}{{1{\rm{ hr}}}}} \right)}}\\ &= 3.33 \times {10^{12}}\;{\rm{W}}\end{aligned}\)

The area of solar energy collector to meet the energy demand in United States is,

\({A_{US}} = \frac{{{P_{US}}}}{{P'}}\)

Putting all known values,

\(\begin{aligned}{A_{US}} &= \frac{{3.33 \times {{10}^{12}}{\rm{ W}}}}{{26{\rm{ W}}/{{\rm{m}}^2}}}\\ &= 1.28076 \times {10^{11}}{\rm{ }}{{\rm{m}}^2} \times \left( {\frac{{1{\rm{ k}}{{\rm{m}}^2}}}{{{{10}^6}{\rm{ }}{{\rm{m}}^2}}}} \right)\\ &= 128076{\rm{ k}}{{\rm{m}}^2}\end{aligned}\)

Therefore, the area of solar energy collector to meet the energy demand of United States is \(128076{\rm{ k}}{{\rm{m}}^2}\).

05

Area of the solar collector to meet the energy demand of Australia

The energy consumption of Australia in a year is\({E_A} = 5.4 \times {10^{18}}{\rm{ J}}\). Therefore, power consumption of Australia in a year is,

\({P_A} = \frac{{{E_A}}}{{1{\rm{ year}}}}\)

Putting all known values,

\(\begin{aligned}{P_A} &= \frac{{5.4 \times {{10}^{18}}{\rm{ J}}}}{{\left( {1{\rm{ year}}} \right) \times \left( {\frac{{365{\rm{ day}}}}{{1{\rm{ year}}}}} \right) \times \left( {\frac{{24{\rm{ hr}}}}{{1{\rm{ day}}}}} \right) \times \left( {\frac{{3600{\rm{ s}}}}{{1{\rm{ hr}}}}} \right)}}\\ &= 1.71 \times {10^{11}}\;{\rm{W}}\end{aligned}\)

The area of solar energy collector to meet the energy demand in Australia is,

\({A_A} = \frac{{{P_A}}}{{P'}}\)

Putting all known values,

\(\begin{aligned}{A_A} &= \frac{{1.71 \times {{10}^{11}}{\rm{ W}}}}{{26{\rm{ W}}/{{\rm{m}}^2}}}\\ &= 6.5769 \times {10^9}{\rm{ }}{{\rm{m}}^2} \times \left( {\frac{{1{\rm{ k}}{{\rm{m}}^2}}}{{{{10}^6}{\rm{ }}{{\rm{m}}^2}}}} \right)\\ &= 6576.9{\rm{ k}}{{\rm{m}}^2}\end{aligned}\)

Therefore, the area of solar energy collector to meet the energy demand of Australia is \(6576.9{\rm{ k}}{{\rm{m}}^2}\).

06

Area of the solar collector to meet the energy demand of China

The energy consumption of China in a year is\({E_C} = 6.3 \times {10^{19}}{\rm{ J}}\). Therefore, power consumption of Australia in a year is,

\({P_C} = \frac{{{E_C}}}{{1{\rm{ year}}}}\)

Putting all known values,

\(\begin{aligned}{P_C} &= \frac{{6.3 \times {{10}^{19}}{\rm{ J}}}}{{\left( {1{\rm{ year}}} \right) \times \left( {\frac{{365{\rm{ day}}}}{{1{\rm{ year}}}}} \right) \times \left( {\frac{{24{\rm{ hr}}}}{{1{\rm{ day}}}}} \right) \times \left( {\frac{{3600{\rm{ s}}}}{{1{\rm{ hr}}}}} \right)}}\\ &= 1.99 \times {10^{12}}\;{\rm{W}}\end{aligned}\)

The area of solar energy collector to meet the energy demand in China is,

\({A_C} = \frac{{{P_C}}}{{P'}}\)

Putting all known values,

\(\begin{aligned}{A_C} &= \frac{{1.99 \times {{10}^{12}}{\rm{ W}}}}{{26{\rm{ W}}/{{\rm{m}}^2}}}\\ &= 7.65385 \times {10^{10}}{\rm{ }}{{\rm{m}}^2} \times \left( {\frac{{1{\rm{ k}}{{\rm{m}}^2}}}{{{{10}^6}{\rm{ }}{{\rm{m}}^2}}}} \right)\\ &= 76538.5{\rm{ k}}{{\rm{m}}^2}\end{aligned}\)

Therefore, the area of solar energy collector to meet the energy demand of China is \(76538.5{\rm{ k}}{{\rm{m}}^2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Calculate the force needed to bring a 950-kg car to rest from a speed of 90.0 km/h in a distance of 120 m (a fairly typical distance for a non-panic stop).

(b) Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a).

In Example 7.7, we calculated the final speed of a roller coaster that descended \(20{\rm{ m}}\) in height and had an initial speed of \(5{\rm{ m}}/{\rm{s}}\) downhill. Suppose the roller coaster had had an initial speed of \(5{\rm{ m}}/{\rm{s}}\) uphill instead, and it coasted uphill, stopped, and then rolled back down to a final point 20m below the start. We would find in that case that it had the same final speed. Explain in terms of conservation of energy.

(a) Find the useful power output of an elevator motor that lifts a \(2500 - {\rm{kg}}\) load a height of \(35.0{\rm{ m}}\) in \(12.0{\rm{ s}}\), if it also increases the speed from rest to \(4.00{\rm{ m}}/{\rm{s}}\). Note that the total mass of the counterbalanced system is \(10,000{\rm{ kg}} - \)so that only \(2500{\rm{ kg}}\) is raised in height, but the full \(10,000{\rm{ kg}}\) is accelerated.

(b) What does it cost, if electricity is \(\$ 0.0900{\rm{ per kW}} \cdot {\rm{h}}\)?

A 500-kg dragster accelerates from rest to a final speed of 110 m/s in 400 m (about a quarter of a mile) and encounters an average frictional force of 1200 N. What is its average power output in watts and horsepower if this takes 7.30 s?

Suppose a star 1000 times brighter than our Sun (that is, emitting 1000 times the power) suddenly goes supernova. Using data from Table 7.3:

(a) By what factor does its power output increase?

(b) How many times brighter than our entire Milky Way galaxy is the supernova?

(c) Based on your answers, discuss whether it should be possible to observe supernovas in distant galaxies. Note that there are on the order of 1011 observable galaxies, the average brightness of which is somewhat less than our own galaxy.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free