Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is the width of a single slit that produces its first minimum at \({\rm{60}}{\rm{.0^\circ }}\) for 600-nm light? (b) Find the wavelength of light that has its first minimum at \({\rm{62}}{\rm{.}}{{\rm{0}}^{\rm{^\circ }}}\).

Short Answer

Expert verified

(a) The slit's width is \({\rm{6}}{\rm{.93 \times 1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{\;m}}\).

(b) The wavelength of light that has its initial minimum at \({\rm{62}}{\rm{.}}{{\rm{0}}^{\rm{^\circ }}}\)is \({\rm{6}}{\rm{.12 \times 1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{\;m}}\).

Step by step solution

01

Definition of wavelength

The wavelength of a waveform signal conveyed in space or down a wire is the distance between identical points (adjacent crests) in adjacent cycles.

02

Given data

Angle for the first minimum is\({\rm{60}}{\rm{.0}}^\circ \)

Wavelength of the light is,

\(\lambda = 600\;nm\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 9}}}}{\rm{\;m}}}}{{1\;nm}}} \right) = 6.00 \times {\rm{1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{\;m}}\)

03

Find the width of a single slit

To find the width of the slit, solve\({\rm{Dsin(\theta ) = m\lambda }}\)for D, where\({\rm{m = 1}}\),

\(\begin{array}{c}{\rm{D = }}\frac{{{\rm{m\lambda }}}}{{{\rm{sin(\theta )}}}}\\{\rm{ = }}\frac{{{\rm{1 \times 6}}{\rm{.00 \times 1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{\;m}}}}{{{\rm{sin}}\left( {{\rm{60}}{\rm{.0}}^\circ } \right)}}\\{\rm{ = 6}}{\rm{.93 \times 1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{\;m}}\end{array}\)

Therefore, the slit's width is \({\rm{6}}{\rm{.93 \times 1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{\;m}}\).

04

Find the wavelength of light

Let us calculate the equation\({\rm{Dsin(\theta ) = m\lambda }}\)for lambda where m=1 to get the wavelength for the initial minimum.

\(\begin{array}{c}{\rm{\lambda = }}\frac{{{\rm{Dsin(\theta )}}}}{{\rm{m}}}\\{\rm{ = }}\frac{{{\rm{6}}{\rm{.93 \times 1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{\;m \times sin}}\left( {{\rm{62}}{\rm{.0}}^\circ } \right)}}{{\rm{1}}}\\{\rm{ = 6}}{\rm{.12 \times 1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{\;m}}\end{array}\)

Hence, the wavelength of light that has its initial minimum at \({\rm{62}}{\rm{.0}}^\circ \)is \({\rm{6}}{\rm{.12 \times 1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{\;m}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free