Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Calculate the angle at which a 2.00-µm -wide slit produces its first minimum for 410-nm violet light. (b) Where is the first minimum for 700-nm red light?

Short Answer

Expert verified
  1. \({\rm{11}}{\rm{.8}}^\circ \)is the angle for the initial minimum for violet light.
  2. \({\rm{20}}{\rm{.5}}^\circ \)is the angle for the initial minimum for the red light.

Step by step solution

01

Definition of wavelength

The wavelength of a waveform signal conveyed in space or down a wire is the distance between identical points (adjacent crests) in adjacent cycles.

02

Given Data

Slit separation is\({\rm{D}} = 2.00\;\mu m\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{\;m}}}}{{1\;\mu m}}} \right)\; = {\rm{2}}{\rm{.00 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{\;m}}\)

The wavelength of the light is,

\({\lambda _v} = 410\;nm\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 9}}}}{\rm{\;m}}}}{{1\;nm}}} \right) = 4.10 \times {\rm{1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{\;m, }}{\lambda _r} = 700\;nm\left( {\frac{{{\rm{1}}{{\rm{0}}^{{\rm{ - 9}}}}{\rm{\;m}}}}{{1\;nm}}} \right) = 7.00 \times {\rm{1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{\;m}}\)

03

Find the angle at which a 2.00-µm -wide slit produces

To find the angle at which the violet light is at its first minimum, we utilize the equation\({\rm{D sin}}\left( {{{\rm{\theta }}_{\rm{v}}}} \right){\rm{ = m}}{{\rm{\lambda }}_{\rm{v}}}\)and solve it for\({{\rm{\theta }}_{\rm{v}}}\), we get

\(\begin{array}{c}{{\rm{\theta }}_{\rm{v}}} = {\rm{si}}{{\rm{n}}^{{\rm{ - 1}}}}\left( {\frac{{{\rm{m}}{{\rm{\lambda }}_{\rm{v}}}}}{{\rm{D}}}} \right)\\ = {\rm{si}}{{\rm{n}}^{{\rm{ - 1}}}}\left( {\frac{{{\rm{1}} \times 4.10 \times {\rm{1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{\;m}}}}{{{\rm{2}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{\;m}}}}} \right)\\ = {\rm{11}}{\rm{.8}}^\circ \end{array}\)

Therefore, \({\rm{11}}{\rm{.8}}^\circ \) is the angle for the initial minimum for violet light.

04

Find the first minimum for 700-nm red light

We apply the equation to find the angle at which the red light is at its first minimum\({\rm{Dsin}}\left( {{{\rm{\theta }}_{\rm{r}}}} \right){\rm{ = m}}{{\rm{\lambda }}_{\rm{r}}}\)\({\rm{and solve it for}}\)\({{\rm{\theta }}_{\rm{r}}}\)

\(\begin{array}{c}{{\rm{\theta }}_{\rm{r}}}{\rm{ }} = {\rm{si}}{{\rm{n}}^{{\rm{ - 1}}}}\left( {\frac{{{\rm{m}}{{\rm{\lambda }}_{\rm{r}}}}}{{\rm{D}}}} \right)\\ = {\rm{si}}{{\rm{n}}^{{\rm{ - 1}}}}\left( {\frac{{{\rm{1}} \times {\rm{7}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{{\rm{ - 7}}}}{\rm{\;m}}}}{{{\rm{2}}{\rm{.00}} \times {\rm{1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{\;m}}}}} \right)\\ = {\rm{20}}{\rm{.5}}^\circ \end{array}\)

Therefore, \({\rm{20}}{\rm{.5}}^\circ \)is the angle for the initial minimum for the red light.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free