Chapter 6: Q6.3-26 PE (page 222)
What is the ideal speed to take a \(100{\rm{ m}}\) radius curve banked at \(20.0^\circ \) angle?
Short Answer
The ideal speed is \(18.9{\rm{ m}}/{\rm{s}}\).
Chapter 6: Q6.3-26 PE (page 222)
What is the ideal speed to take a \(100{\rm{ m}}\) radius curve banked at \(20.0^\circ \) angle?
The ideal speed is \(18.9{\rm{ m}}/{\rm{s}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeAs a skater forms a circle, what force is responsible for making her turn? Use a free body diagram in your answer.
Calculate the mass of the Sun based on data for Earthโs orbit and compare the value obtained with the Sunโs actual mass.
A large centrifuge, like the one shown in Figure (a), is used to expose aspiring astronauts to accelerations similar to those experienced in rocket launches and atmospheric re-entries. (a) At what angular velocity is the centripetal acceleration \(10g\) if the rider is \(15.0{\rm{ m}}\) from the centre of rotation? (b) The riderโs cage hangs on a pivot at the end of the arm, allowing it to swing outward during rotation as shown in Figure (b). At what angle \(\theta \) below the horizontal will the cage hang when the centripetal acceleration is \(10g\)? (Hint: The arm supplies centripetal force and supports the weight of the cage. Draw a free body diagram of the forces to see what the angle \(\theta \) should be.)
*Figure (a) NASA centrifuge used to subject trainees to accelerations similar to those experienced in rocket launches and re-entries. (Credit: NASA) (b) Rider in cage showing how the cage pivots outward during rotation. This allows the total force exerted on the rider by the cage to be along its axis at all times.
If centripetal force is directed toward the centre, why do you feel that you are โthrownโ away from the centre as a car goes around a curve? Explain.
(a) Calculate the magnitude of the acceleration due to gravity on the surface of Earth due to the Moon. (b) Calculate the magnitude of the acceleration due to gravity at Earth due to the Sun. (c) Take the ratio of the Moonโs acceleration to the Sunโs and comment on why the tides are predominantly due to the Moon in spite of this number.
What do you think about this solution?
We value your feedback to improve our textbook solutions.