Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

When a toilet is flushed or a sink is drained, the water (and other material) begins to rotate about the drain on the way down. Assuming no initial rotation and a flow initially directly straight toward the drain, explain what causes the rotation and which direction it has in the northern hemisphere. (Note that this is a small effect and in most toilets the rotation is caused by directional water jets.) Would the direction of rotation reverse if water were forced up the drain?

Short Answer

Expert verified

The Northern Hemisphere's rotation is counterclockwise, just as the Northern Hemisphere's earth rotates counterclockwise.

Yes, the direction of rotation would be reversed if water were forced up the drain.

Step by step solution

01

Definition of water

Water is a colorless, transparent, odorless liquid that makes up the oceans, lakes, rivers, and rain, as well as the fluids that keep living beings alive.

02

Explaining the reason for rotation

When a toilet or sink is flushed or drained, the toilet or sink becomes an inertial frame of reference. An imaginary force acts in this frame of reference, carrying water or another substance away from the center of rotation, causing it to rotate down the path.

03

Determining direction

The direction of rotation in the Northern hemisphere is counter-clockwise as the direction of the earth in the Northern hemisphere is counterclockwise. Yes, the direction of rotation would be reversed if water were forced up the drain because the earth rotates clockwise as viewed from the southern hemisphere.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Newtonโ€™s laws of motion and gravity were among the first to convincingly demonstrate the underlying simplicity and unity in nature. Many other examples have since been discovered, and we now expect to find such underlying order in complex situations. Is there proof that such order will always be found in new explorations?

(a) What is the acceleration due to gravity on the surface of the Moon?

(b) On the surface of Mars? The mass of Mars is \({\bf{6}}.{\bf{418}} \times {\bf{1}}{{\bf{0}}^{{\bf{23}}}}{\bf{kg}}\) and its radius is\({\bf{3}}.{\bf{38}} \times {\bf{1}}{{\bf{0}}^{\bf{6}}}{\bf{m}}\).

A large centrifuge, like the one shown in Figure (a), is used to expose aspiring astronauts to accelerations similar to those experienced in rocket launches and atmospheric re-entries. (a) At what angular velocity is the centripetal acceleration \(10g\) if the rider is \(15.0{\rm{ m}}\) from the centre of rotation? (b) The riderโ€™s cage hangs on a pivot at the end of the arm, allowing it to swing outward during rotation as shown in Figure (b). At what angle \(\theta \) below the horizontal will the cage hang when the centripetal acceleration is \(10g\)? (Hint: The arm supplies centripetal force and supports the weight of the cage. Draw a free body diagram of the forces to see what the angle \(\theta \) should be.)



*Figure (a) NASA centrifuge used to subject trainees to accelerations similar to those experienced in rocket launches and re-entries. (Credit: NASA) (b) Rider in cage showing how the cage pivots outward during rotation. This allows the total force exerted on the rider by the cage to be along its axis at all times.

If centripetal force is directed toward the centre, why do you feel that you are โ€˜thrownโ€™ away from the centre as a car goes around a curve? Explain.

An automobile with 0.260 m radius tires travels80,000km before wearing them out. How many revolutions do the tires make, neglecting any backing up and any change in radius due to wear?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free