Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the sum of the vectors discussed in Example 3.2 gives the result shown in Figure 3.24.

Short Answer

Expert verified

The location of the dock is \(52.94\;{\rm{m}}\), \({89.9^ \circ }\) north of west.

Step by step solution

01

Vectors

Vectors are physical quantities that have magnitude and direction.

The two vectors cannot be added by using simple algebraic rules. They can be added by using the triangle law of vector addition.

02

Representation of vectors

The vectors \({\rm{A}}\) and \({\rm{B}}\) are represented as,

Representation of vectors \({\rm{A}}\) and \({\rm{B}}\)

03

Given data:

  • The magnitude of the vector \({\rm{A}}\)is, \(A = 27.5\;{\rm{m}}\).
  • The magnitude of the vector \({\rm{B}}\)is, \(B = 30\;{\rm{m}}\).
04

Horizontal component of vectors

The horizontal component of the vector \({\rm{A}}\) is,

\({A_x} = {\rm{A}}\cos \left( {{{66}^ \circ }} \right)\)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{A_x} &= \left( {27.5\;{\rm{m}}} \right) \times \cos \left( {{{66}^ \circ }} \right)\\ &= 11.185\;{\rm{m}}\end{aligned}\)

The horizontal component of the vector \({\rm{B}}\) is,

\({B_x} = {\rm{B}}\cos \left( {{{112}^ \circ }} \right)\)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{B_x} &= \left( {30\;{\rm{m}}} \right) \times \cos \left( {{{112}^ \circ }} \right)\\ &= - 11.238\;{\rm{m}}\end{aligned}\)

The resultant of horizontal components vectors \({\rm{A}}\) and \({\rm{B}}\) is,

\({R_x} = {A_x} + {B_x}\)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{R_x} &= \left( {11.185\;{\rm{m}}} \right) + \left( { - 11.238\;{\rm{m}}} \right)\\ &= - 0.053\;{\rm{m}}\end{aligned}\)

05

Vertical component of vectors

The vertical component of the vector \({\rm{A}}\) is,

\({A_y} = A\sin \left( {{{66}^ \circ }} \right)\)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{A_y} &= \left( {27.5\;{\rm{m}}} \right) \times \sin \left( {{{66}^ \circ }} \right)\\ &= 25.123\;{\rm{m}}\end{aligned}\)

The vertical component of the vector \({\rm{B}}\) is,

\({B_y} = B\sin \left( {{{112}^ \circ }} \right)\)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{B_y} &= \left( {30\;{\rm{m}}} \right) \times \sin \left( {{{112}^ \circ }} \right)\\ &= 27.816\;{\rm{m}}\end{aligned}\)

The resultant of vertical components vectors \({\rm{A}}\) and \({\rm{B}}\) is,

\({R_y} = {A_y} + {B_y}\)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{R_y} &= \left( {25.123\;{\rm{m}}} \right) + \left( {27.816\;{\rm{m}}} \right)\\ &= 52.939\;{\rm{m}}\end{aligned}\)

06

Resultant vector

The magnitude of the resultant vector is,

\(R = \sqrt {R_x^2 + R_y^2} \)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}R &= \sqrt {{{\left( { - 0.053\;{\rm{m}}} \right)}^2} + {{\left( {52.939\;{\rm{m}}} \right)}^2}} \\ \approx 52.94\;{\rm{m}}\end{aligned}\)

The direction of the resultant vector is,

\(\theta = {\tan ^{ - 1}}\left( {\frac{{{R_y}}}{{{R_x}}}} \right)\)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}\theta &= {\tan ^{ - 1}}\left( {\frac{{52.939\;{\rm{m}}}}{{ - 0.053\;{\rm{m}}}}} \right)\\ &= - {89.9^ \circ }\end{aligned}\)

Hence, the location of the dock is \(52.94\;{\rm{m}}\), \({89.9^ \circ }\) north of west.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free