Chapter 3: Q9PE (page 121)
Show that the sum of the vectors discussed in Example 3.2 gives the result shown in Figure 3.24.
Short Answer
The location of the dock is \(52.94\;{\rm{m}}\), \({89.9^ \circ }\) north of west.
Step by step solution
Vectors
Vectors are physical quantities that have magnitude and direction.
The two vectors cannot be added by using simple algebraic rules. They can be added by using the triangle law of vector addition.
Representation of vectors
The vectors \({\rm{A}}\) and \({\rm{B}}\) are represented as,
Representation of vectors \({\rm{A}}\) and \({\rm{B}}\)
Given data:
- The magnitude of the vector \({\rm{A}}\)is, \(A = 27.5\;{\rm{m}}\).
- The magnitude of the vector \({\rm{B}}\)is, \(B = 30\;{\rm{m}}\).
Horizontal component of vectors
The horizontal component of the vector \({\rm{A}}\) is,
\({A_x} = {\rm{A}}\cos \left( {{{66}^ \circ }} \right)\)
Substitute the values in the above expression, and we get,
\(\begin{aligned}{}{A_x} &= \left( {27.5\;{\rm{m}}} \right) \times \cos \left( {{{66}^ \circ }} \right)\\ &= 11.185\;{\rm{m}}\end{aligned}\)
The horizontal component of the vector \({\rm{B}}\) is,
\({B_x} = {\rm{B}}\cos \left( {{{112}^ \circ }} \right)\)
Substitute the values in the above expression, and we get,
\(\begin{aligned}{}{B_x} &= \left( {30\;{\rm{m}}} \right) \times \cos \left( {{{112}^ \circ }} \right)\\ &= - 11.238\;{\rm{m}}\end{aligned}\)
The resultant of horizontal components vectors \({\rm{A}}\) and \({\rm{B}}\) is,
\({R_x} = {A_x} + {B_x}\)
Substitute the values in the above expression, and we get,
\(\begin{aligned}{}{R_x} &= \left( {11.185\;{\rm{m}}} \right) + \left( { - 11.238\;{\rm{m}}} \right)\\ &= - 0.053\;{\rm{m}}\end{aligned}\)
Vertical component of vectors
The vertical component of the vector \({\rm{A}}\) is,
\({A_y} = A\sin \left( {{{66}^ \circ }} \right)\)
Substitute the values in the above expression, and we get,
\(\begin{aligned}{}{A_y} &= \left( {27.5\;{\rm{m}}} \right) \times \sin \left( {{{66}^ \circ }} \right)\\ &= 25.123\;{\rm{m}}\end{aligned}\)
The vertical component of the vector \({\rm{B}}\) is,
\({B_y} = B\sin \left( {{{112}^ \circ }} \right)\)
Substitute the values in the above expression, and we get,
\(\begin{aligned}{}{B_y} &= \left( {30\;{\rm{m}}} \right) \times \sin \left( {{{112}^ \circ }} \right)\\ &= 27.816\;{\rm{m}}\end{aligned}\)
The resultant of vertical components vectors \({\rm{A}}\) and \({\rm{B}}\) is,
\({R_y} = {A_y} + {B_y}\)
Substitute the values in the above expression, and we get,
\(\begin{aligned}{}{R_y} &= \left( {25.123\;{\rm{m}}} \right) + \left( {27.816\;{\rm{m}}} \right)\\ &= 52.939\;{\rm{m}}\end{aligned}\)
Resultant vector
The magnitude of the resultant vector is,
\(R = \sqrt {R_x^2 + R_y^2} \)
Substitute the values in the above expression, and we get,
\(\begin{aligned}{}R &= \sqrt {{{\left( { - 0.053\;{\rm{m}}} \right)}^2} + {{\left( {52.939\;{\rm{m}}} \right)}^2}} \\ \approx 52.94\;{\rm{m}}\end{aligned}\)
The direction of the resultant vector is,
\(\theta = {\tan ^{ - 1}}\left( {\frac{{{R_y}}}{{{R_x}}}} \right)\)
Substitute the values in the above expression, and we get,
\(\begin{aligned}{}\theta &= {\tan ^{ - 1}}\left( {\frac{{52.939\;{\rm{m}}}}{{ - 0.053\;{\rm{m}}}}} \right)\\ &= - {89.9^ \circ }\end{aligned}\)
Hence, the location of the dock is \(52.94\;{\rm{m}}\), \({89.9^ \circ }\) north of west.
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!