Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An ice hockey player is moving atm/s when he hits the puck toward the goal. The speed of the puck relative to the player is m/s. The line between the center of the goal and the player makes aangle relative to his path, as shown in Figure. What angle must the puck's velocity make relative to the player (in his frame of reference) to hit the center of the goal?

Short Answer

Expert verified

The angle that the puck’s velocity must make relative to the player is 73.98°.

Step by step solution

01

Definition of velocity

Velocity is the rate of change in position of an item in motion as seen from a specific frame of reference and measured by a specific time standard.

The speed of the puck relative to the player is 29 m/s.Let’s focus on the triangle in the question.

02

The angle that the puck’s velocity must make relative to the player

The angle that the puck’s velocity must make relative to the player can be calculated as:

sinθ=VplayerVpucksinθ=829sinθ=0.28θ=sin-10.28θ=16.01°

The angle that the puck’s velocity must make relative to the player is:

β=90°-θβ=90°-16.01°β=73.98°

The angle that the puck’s velocity must make relative to the player is 73.98°.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose you walk \({\bf{18}}.{\bf{0}}\)m straight west and then \({\rm{25}}{\rm{.0}}\) m straight north. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements A and B , then this problem asks you to find their sum R = A + B .)

An eagle is flying horizontally at a speed of3.00m/s when the fish in her talons wiggles loose and falls into the lake5.00m below. Calculate the velocity of the fish relative to the water when it hits the water.


Solve the following problem using analytical techniques: Suppose you walk 18.0mstraight west and then 250.0mstraight north. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements and , as in Figure, then this problem asks you to find their sum R=A+B.)

The two displacements and add to give a total displacement having magnitude and direction .

Note that you can also solve this graphically. Discuss why the analytical technique for solving this problem is potentially more accurate than the graphical technique.

You drive \(7.50{\rm{ km}}\) in a straight line in a direction \(15^\circ \) east of north.

(a) Find the distances you would have to drive straight east and then straight north to arrive at the same point. (This determination is equivalent to find the components of the displacement along the east and north directions.)

(b) Show that you still arrive at the same point if the east and north legs are reversed in order.

The hat of a jogger running at constant velocity falls off the back of his head. Draw a sketch showing the path of the hat in the jogger’s frame of reference. Draw its path as viewed by a stationary observer.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free