Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose you walk \({\bf{18}}.{\bf{0}}\)m straight west and then \({\rm{25}}{\rm{.0}}\) m straight north. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements A and B , then this problem asks you to find their sum R = A + B .)

Short Answer

Expert verified

The resultant vector is \({\rm{30}}{\rm{.8}}\) m.

Step by step solution

01

Determining the total distance

Displacement is defined as the shortest path between the initial and final positions. It is a vector quantity.

To calculate the distance from starting point to the final point, the resultant vector is

\(\overrightarrow R = \overrightarrow A + \overrightarrow B \)

Here\(\overrightarrow A \)is the total x-component of displacement and\(\overrightarrow B \)is the total y-component of displacement.

By vector law of addition, the resultant vector is

\(|\vec R| = \sqrt {{A^2} + {B^2} + 2AB\cos \theta } \)…………..(1)

Given data:

Given data:

  • \(\overrightarrow A = 18\;{\rm{m}}\)
  • \(\overrightarrow B = 25\;{\rm{m}}\)
  • 𝛉=90°uncaught exception: Http Error #403

    in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
    #0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #403') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #403') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #403') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #403') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #403') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('c716977a12f9565...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">
02

Determining the resultant vector

Substituting the values in equation (1), we get

\(\begin{array}{c}|\vec R|\; = \sqrt {{{18}^2} + {{25}^2} + 2 \times 18 \times 25\cos {{90}^ \circ }} \\|\vec R|\; = \sqrt {{{18}^2} + {{25}^2}} \\|\vec R|\; = \sqrt {324 + 625} \\|\vec R|\; = \sqrt {949} \\|\vec R|\; = 30.8\;\;{\rm{m}}\end{array}\)

Therefore the resultant vector is \(30.8\)m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free