Chapter 3: Q3.2-7 PE (page 121)
(a) Repeat the problem two problems prior, but for the second leg you walk \(20.0{\rm{ m}}\) in a direction \(40.0^\circ \) north of east (which is equivalent to subtracting \({\rm{B}}\) from \({\rm{A}}\) —that is, to finding \({\rm{R'}} = {\rm{A}} - {\rm{B}}\)).
(b) Repeat the problem two problems prior, but now you first walk \(20.0{\rm{ m}}\) in a direction \(40.0^\circ \) south of west and then \(12.0{\rm{ m}}\) in a direction \(20.0^\circ \) east of south (which is equivalent to subtracting \({\rm{A}}\) from \({\rm{B}}\) —that is, to finding \({\rm{R''}} = {\rm{B}} - {\rm{A}} = - {\rm{R'}}\)). Show that this is the case.
Short Answer
(a) The magnitude of the resultant vector is \(26.62{\rm{ m}}\) and is directed towards \(65.1^\circ \) the north of the east.
(b) The magnitude of the resultant vector is \(26.62{\rm{ m}}\) and is directed towards \(65.1^\circ \) south of west.
Step by step solution
Triangle rule of vector addition
When two vectors are taken along two sides of a triangle, the third side of the triangle is always in reverse order. It represents the magnitude and direction of the resultant vector, according to the triangle rule of vector addition.
Given data
- Magnitude of vector \({\rm{A}}\) \(A = 12\,{\rm{m}}\).
- Direction of vector \({\rm{A}}\) \({\theta _A} = 20^\circ \).
- Magnitude of vector \({\rm{B}}\) \(B = 20.0\,{\rm{m}}\).
- Direction of vector \({\rm{B}}\) \({\theta _B} = 40.0^\circ \).
(a) Vector Representation
The vectors are represented as,
Fig: Representation of vector
Horizontal component of the resultant vector
The horizontal component of the vector \({\rm{A}}\) is,
\({A_x} = - A\sin {\theta _A}\)
Here \(A\) is the magnitude of a vector \({\rm{A}}\)and \({\theta _A}\) is the angle between \(y\)-the axis and the vector \({\rm{A}}\).
Substitute \(12{\rm{ m}}\) for \(A\) and \(20^\circ \) for \({\theta _A}\),
\(\begin{aligned}{}{A_x} = - \left( {12{\rm{ m}}} \right) \times \sin \left( {20^\circ } \right)\\ = - 4.1{\rm{ m}}\end{aligned}\)
The horizontal component of the vector \({\rm{B}}\) is,
\({B_x} = B\cos {\theta _B}\)
Here \(B\) is the magnitude of the vector \({\rm{B}}\), and \({\theta _B}\) is made by the vector \({\rm{B}}\) with the horizontal.
Substitute \(20{\rm{ m}}\) for \(B\) and \(40^\circ \) for \({\theta _B}\),
\(\begin{aligned}{}{B_x} = \left( {20{\rm{ m}}} \right) \times \cos \left( {40^\circ } \right)\\ = 15.32{\rm{ m}}\end{aligned}\)
The resultant horizontal component of the vector \({\rm{A}}\) and \({\rm{B}}\) is,
\({R'_x} = {A_x} + {B_x}\)
Substitute \( - 4.1{\rm{ m}}\) for \({A_x}\) and \(15.32{\rm{ m}}\) for \({B_x}\),
\(\begin{aligned}{}{{R'}_x} = \left( { - 4.1{\rm{ m}}} \right) + \left( {15.32{\rm{ m}}} \right)\\ = 11.22{\rm{ m}}\end{aligned}\)
Vertical component of the resultant vector
The vertical component of the vector \({\rm{A}}\) is,
\({A_y} = A\cos {\theta _A}\)
Here \(A\) is the magnitude of the vector \({\rm{A}}\)and \({\theta _A}\) is the angle between \(y\)the -axis and the vector \({\rm{A}}\).
Substitute \(12{\rm{ m}}\) for \(A\) and \(20^\circ \) for \({\theta _A}\),
\(\begin{aligned}{}{A_y} = \left( {12{\rm{ m}}} \right) \times \cos \left( {20^\circ } \right)\\ = 11.28{\rm{ m}}\end{aligned}\)
The vertical component of the vector \(B\) is,
\({B_y} = B\sin {\theta _B}\)
Here \(B\) is the magnitude of a vector \({\rm{B}}\), and \({\theta _B}\) is the made by the vector \({\rm{B}}\) with the horizontal.
Substitute \(20{\rm{ m}}\) for \(B\) and \(40^\circ \) for \({\theta _B}\),
\(\begin{aligned}{}{B_y} = \left( {20{\rm{ m}}} \right) \times \sin \left( {40^\circ } \right)\\ = 12.86{\rm{ m}}\end{aligned}\)
The resultant vertical component of the vector \({\rm{A}}\) and \({\rm{B}}\) is,
\({R'_y} = {A_y} + {B_y}\)
Substitute \({\rm{11}}{\rm{.28 m}}\) for \({A_y}\) and \(12.86{\rm{ m}}\) for \({B_y}\),
\(\begin{aligned}{}{{R'}_y} = \left( {11.28{\rm{ m}}} \right) + \left( {12.86{\rm{ m}}} \right)\\ = 24.14{\rm{ m}}\end{aligned}\)
Resultant
The resultant of vector \({\rm{A}}\) and \({\rm{B}}\) is,
\[{R}'=\sqrt{{{R_x}'^2}+{{R_y}'^2}}\]
Substitute \(11.22{\rm{ m}}\) for \({R'_x}\) and \(24.14{\rm{ m}}\) for \({R'_y}\),
\(\begin{aligned}{}R' = \sqrt {{{\left( {11.22{\rm{ m}}} \right)}^2} + {{\left( {24.14{\rm{ m}}} \right)}^2}} \\ = 26.62{\rm{ m}}\end{aligned}\)
The direction of the resultant vector is,
\(\theta = {\tan ^{ - 1}}\left( {\frac{{{{R'}_y}}}{{{{R'}_x}}}} \right)\)
Substitute \(11.22{\rm{ m}}\) for \({R'_x}\) and \(24.14{\rm{ m}}\) for \({R'_y}\),
\(\begin{aligned}{}\alpha = {\tan ^{ - 1}}\left( {\frac{{24.14{\rm{ m}}}}{{11.22{\rm{ m}}}}} \right)\\ = 65.1^\circ \end{aligned}\)
Hence, the magnitude of the resultant vector is \(26.62{\rm{ m}}\) and is directed towards \(65.1^\circ \) north of east.
(b) Vector Representation
The vectors are represented as,
Representation of vector
Horizontal component of the resultant vector
The horizontal component of the vector \({\rm{A}}\) is,
\({A_x} = A\sin {\theta _A}\)
Here \(A\) is the magnitude of the vector \({\rm{A}}\)and \({\theta _A}\) is the angle between \(y\)-axis and the vector \({\rm{A}}\).
Substitute \(12{\rm{ m}}\) for \(A\) and \(20^\circ \) for \({\theta _A}\),
\(\begin{aligned}{}{A_x} = \left( {12{\rm{ m}}} \right) \times \sin \left( {20^\circ } \right)\\ = 4.1{\rm{ m}}\end{aligned}\)
The horizontal component of the vector \({\rm{B}}\) is,
\({B_x} = - B\cos {\theta _B}\)
Here \(B\) is the magnitude of the vector \({\rm{B}}\) and \({\theta _B}\) is the angle made by the vector \({\rm{B}}\) with the horizontal.
Substitute \(20{\rm{ m}}\) for \(B\) and \(40^\circ \) for \({\theta _B}\),
\(\begin{aligned}{}{B_x} = - \left( {20{\rm{ m}}} \right) \times \cos \left( {40^\circ } \right)\\ = - 15.32{\rm{ m}}\end{aligned}\)
The resultant horizontal component of the vector \({\rm{A}}\) and \({\rm{B}}\) is,
\({R''_x} = {A_x} + {B_x}\)
Substitute \(4.1{\rm{ m}}\) for \({A_x}\) and \( - 15.32{\rm{ m}}\) for \({B_x}\),
\(\begin{aligned}{}{{R''}_x} = \left( {4.1{\rm{ m}}} \right) + \left( { - 15.32{\rm{ m}}} \right)\\ = - 11.22{\rm{ m}}\end{aligned}\)
Vertical component of the resultant vector
The vertical component of the vector \({\rm{A}}\) is,
\({A_y} = - A\cos {\theta _A}\)
Here \(A\) is the magnitude of the vector \({\rm{A}}\)and \({\theta _A}\) is the angle between \(y\)-axis and the vector \({\rm{A}}\).
Substitute \(12{\rm{ m}}\) for \({\rm{A}}\) and \(20^\circ \) for \({\theta _A}\),
\(\begin{aligned}{}{A_y} = - \left( {12{\rm{ m}}} \right) \times \cos \left( {20^\circ } \right)\\ = - 11.28{\rm{ m}}\end{aligned}\)
The vertical component of the vector \({\rm{B}}\) is,
\({B_y} = - B\sin {\theta _B}\)
Here \(B\) is the magnitude of the vector \({\rm{B}}\), and \({\theta _B}\) is the made by the vector \({\rm{B}}\) with the horizontal.\({\rm{B}}\)
Substitute \(20{\rm{ m}}\) for \(B\) and \(40^\circ \) for \({\theta _B}\),
\(\begin{aligned}{}{B_y} = - \left( {20{\rm{ m}}} \right) \times \sin \left( {40^\circ } \right)\\ = - 12.86{\rm{ m}}\end{aligned}\)
The resultant vertical component of the vector \({\rm{A}}\) and is,
\({R''_y} = {A_y} + {B_y}\)
Substitute \( - {\rm{11}}{\rm{.28 m}}\) for \({A_y}\) and \( - 12.86{\rm{ m}}\) for \({B_y}\),
\(\begin{aligned}{}{{R''}_y} = \left( { - 11.28{\rm{ m}}} \right) + \left( { - 12.86{\rm{ m}}} \right)\\ = - 24.14{\rm{ m}}\end{aligned}\)
Resultant
The resultant of vector \({\rm{A}}\) and \({\rm{B}}\) is,
\({R}'=\sqrt{{{R_x}'^2}+{{R_y}'^2}}\)
Substitute \( - 11.22{\rm{ m}}\) for \({R''_x}\) and \( - 24.14{\rm{ m}}\) for \({R''_y}\),
\(\begin{aligned}{}R'' = \sqrt {{{\left( {11.22{\rm{ m}}} \right)}^2} + {{\left( {24.14{\rm{ m}}} \right)}^2}} \\ = 26.62{\rm{ m}}\end{aligned}\)
The direction of the resultant vector is,
\(\beta = {\tan ^{ - 1}}\left( {\frac{{{{R''}_y}}}{{{{R''}_x}}}} \right)\)
Substitute \( - 11.22{\rm{ m}}\) for \({R''_x}\) and \( - 24.14{\rm{ m}}\) for \({R''_y}\),
\(\begin{aligned}{}\beta = {\tan ^{ - 1}}\left( {\frac{{ - 24.14{\rm{ m}}}}{{ - 11.22{\rm{ m}}}}} \right)\\ = 65.1^\circ \end{aligned}\)
Hence, the magnitude of the resultant vector is \(26.62{\rm{ m}}\) and is directed towards \(65.1^\circ \) south of west.
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!