Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the magnitudes of velocities\({v_A}\)and\({v_B}\)in Figure 3.57.

The two velocities\({{\rm{v}}_{\rm{A}}}\)and\({{\rm{v}}_{\rm{B}}}\)add to give a total \({{\rm{v}}_{{\rm{tot}}}}\).

Short Answer

Expert verified

The magnitude of the velocities \({v_A}\) and \({v_B}\) are \(3.455\;{\rm{m/s}}\) and \(3.932\;{\rm{m/s}}\) respectively.

Step by step solution

01

Definition of Velocity

Velocity is the rate of change of displacement. It is vector quantity expressed as,

\(v = \frac{s}{t}\)

Here\(s\)is the displacement and\(t\)is the time.

The SI unit of velocity is meter per second\(\left( {{\rm{m/s}}} \right)\).

02

Given data

  • The magnitude of the resultant velocity vector,\({v_{tot}} = 6.72\;{\rm{m/s}}\).
  • Velocity vector\({{\rm{v}}_{\rm{A}}}\)makes an angle with horizontal is\({22.5^ \circ }\).
  • The angle between resultant velocity and velocity vector\({{\rm{v}}_{\rm{A}}}\)is\({26.5^ \circ }\).
  • The angle between resultant velocity and velocity vector \({{\rm{v}}_{\rm{B}}}\) is \({23.0^ \circ }\).
03

Finding angles

The two velocities \({{\rm{v}}_{\rm{A}}}\) and \({{\rm{v}}_{\rm{B}}}\) add to give a total \({{\rm{v}}_{{\rm{tot}}}}\) is represented as,

Two velocities \({{\rm{v}}_{\rm{A}}}\) and \({{\rm{v}}_{\rm{B}}}\) add to give a total \({{\rm{v}}_{{\rm{tot}}}}\)

The angle of between \(x\)-axis and \({{\rm{v}}_{{\rm{tot}}}}\) is,

\(\begin{aligned}{}\alpha &= \left( {{{26.5}^ \circ }} \right) + \left( {{{22.5}^ \circ }} \right)\\ &= {49^ \circ }\end{aligned}\)

The angle between the \(y\)-axis and \({{\rm{v}}_{\rm{B}}}\) is obtained from the triangle \(OAB\),

\(\begin{aligned}{}{180^ \circ } &= {22.5^ \circ } + {26.5^ \circ } + {23^ \circ } + \beta + {90^ \circ }\\\beta &= {180^ \circ } - {22.5^ \circ } - {26.5^ \circ } - {23^ \circ } - {90^ \circ }\\ &= {18^ \circ }\end{aligned}\)

The angle between the \(x\)-axis and \({{\rm{v}}_{\rm{B}}}\) is obtained from the triangle \(ABC\),

\(\begin{aligned}{}{180^ \circ } &= \beta + {90^ \circ } + \gamma \\\gamma &= {180^ \circ } - {90^ \circ } - \beta \end{aligned}\)

Substitute \({18^ \circ }\) for \(\beta \), and we get,

\(\begin{aligned}{}\gamma &= {180^ \circ } - {90^ \circ } - {18^ \circ }\\ &= {72^ \circ }\end{aligned}\)

04

Horizontal components of velocities

The horizontal component of \({{\rm{v}}_{\rm{A}}}\) is,

\(\begin{aligned}{}{v_{{A_x}}} &= {v_A}\cos \left( {{{22.5}^ \circ }} \right)\\ &= 0.924{v_A}\end{aligned}\)

The horizontal component of \({{\rm{v}}_{\rm{B}}}\) is,

\({v_{{B_x}}} = {v_B}\cos \gamma \)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{v_{{B_x}}} &= {v_B}\cos \left( {{{72}^ \circ }} \right)\\ &= 0.309{v_B}\end{aligned}\)

The horizontal component of \({{\rm{v}}_{{\rm{tot}}}}\) is,

\({v_{to{t_x}}} = {v_{tot}}\cos \alpha \)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{v_{to{t_x}}} &= \left( {6.72\;{\rm{m/s}}} \right) \times \cos \left( {{{49}^ \circ }} \right)\\ &= 4.409\;{\rm{m/s}}\end{aligned}\)

The horizontal component of \({{\rm{v}}_{{\rm{tot}}}}\) is,

\({v_{to{t_x}}} = {v_{{A_x}}} + {v_{{B_x}}}\)

Substitute the values in the above expression, and we get,

\(4.409\;{\rm{m/s}} = 0.924{v_A} + 0.309{v_B}\)

05

Vertical components of velocities

The vertical component of \({{\rm{v}}_{\rm{A}}}\) is,

\(\begin{aligned}{}{v_{{A_y}}} &= {v_A}\sin \left( {{{22.5}^ \circ }} \right)\\ &= 0.385{v_A}\end{aligned}\)

The vertical component of \({{\rm{v}}_{\rm{B}}}\) is,

\({v_{{B_y}}} = {v_B}\cos \gamma \)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{v_{{B_y}}} &= {v_B}\sin \left( {{{72}^ \circ }} \right)\\ &= 0.951{v_B}\end{aligned}\)

The vertical component of \({{\rm{v}}_{{\rm{tot}}}}\) is,

\({v_{to{t_y}}} = {v_{tot}}\sin \alpha \)

Substitute the values in the above expression, and we get,

\(\begin{aligned}{}{v_{to{t_y}}} &= \left( {6.72\;{\rm{m/s}}} \right) \times \sin \left( {{{49}^ \circ }} \right)\\ &= 5.072\;{\rm{m/s}}\end{aligned}\)

The vertical component of \({{\rm{v}}_{{\rm{tot}}}}\) is,

\({v_{to{t_y}}} = {v_{{A_y}}} + {v_{{B_y}}}\)

Substitute the values in the above expression, and we get,

\(5.072\;{\rm{m/s}} = 0.385{v_A} + 0.951{v_B}\)

06

Solving equations

Multiplying equation (1.1) with\(0.951\),

\(4.193\;{\rm{m/s}} = 0.879{v_A} + 0.294{v_B}\)

Multiplying equation (1.2) with\(0.309\),

\(1.567\;{\rm{m/s}} = 0.119{v_A} + 0.294{v_B}\)

Subtracting equation (1.4) from equation (1.3), we get,

\(\begin{aligned}{}\left( {4.193\;{\rm{m/s}}} \right) - \left( {1.567\;{\rm{m/s}}} \right) &= \left( {0.879{v_A} + 0.294{v_B}} \right) - \left( {0.119{v_A} + 0.294{v_B}} \right)\\2.626\;{\rm{m/s}} &= 0.76{v_A}\\{v_A} &= \frac{{2.626\;{\rm{m/s}}}}{{0.76}}\\ &= 3.455\;{\rm{m/s}}\end{aligned}\)

Substitute the values in the equation (1.3), and we get,

\(\begin{aligned}{}4.193\;{\rm{m/s}} &= 0.879 \times \left( {3.455\;{\rm{m/s}}} \right) + 0.294{v_B}\\0.294{v_B} &= 4.193\;{\rm{m/s}} - 0.879 \times \left( {3.455\;{\rm{m/s}}} \right)\\{v_B} &= \frac{{4.193\;{\rm{m/s}} - 0.879 \times \left( {3.455\;{\rm{m/s}}} \right)}}{{0.294}}\\ &= 3.932\;{\rm{m/s}}\end{aligned}\)

Hence, the magnitude of the velocities\({v_A}\)and\({v_B}\)are\(3.455\;{\rm{m/s}}\)and\(3.932\;{\rm{m/s}}\)respectively.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free