Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose you needed to raise a\(250\;{\rm{kg}}\)mower a distance of\(6.0\;{\rm{cm}}\)above the ground to change a tire. If you had a\(2.0\;{\rm{m}}\)long lever, where would you place the fulcrum if your force was limited to\(300\;{\rm{N}}\)?

Short Answer

Expert verified

The fulcrum should be at a distance of\(1.78\;{\rm{m}}\).

Step by step solution

01

Given Data 

The load is\(W = 250\;{\rm{kg}}\).

The distance moved by the load is \(d = 6\;{\rm{cm}}\).

The lever arm is\(l = 2.0\;{\rm{m}}\)

02

Calculation of the force

Let, the fulcrum is at a distance r from the point of load.

The torque by the forces is zero at equilibrium. So,

\(\begin{align}\sum \tau &= 0\\300 \times r &= 250 \times 9.8\left( {2 - r} \right)\\\left( {300 + 2450} \right)r &= 2450 \times 2\\r &= 1.78\;m\end{align}\)

The fulcrum should be at a distance of\(1.78\;{\rm{m}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A \({\rm{17}}{\rm{.0}}\;{\rm{m}}\)high and \({\rm{11}}{\rm{.0}}\;{\rm{m}}\)long wall under construction and its bracing are shown in Figure \({\rm{9}}{\rm{.32}}\). The wall is in stable equilibrium without the bracing but can pivot at its base. Calculate the force exerted by each of the 10 braces if a strong wind exerts a horizontal force of \({\rm{650}}\;{\rm{N}}\)on each square meter of the wall. Assume that the net force from the wind acts at a height halfway up the wall and that all braces exert equal forces parallel to their lengths. Neglect the thickness of the wall.

Explain one of the reasons why pregnant women often suffer from back strain late in their pregnancy.

(a) What is the mechanical advantage of a wheelbarrow, such as the one inFigure\({\rm{9}}{\rm{.24}}\), if the center of gravity of the wheelbarrow and its load has a perpendicular lever arm of \({\rm{5}}{\rm{.50}}\;{\rm{cm}}\), while the hands have a perpendicular lever arm of \({\rm{1}}{\rm{.02}}\;{\rm{m}}\)? (b) What upward force should you exert to support the wheelbarrow and its load if their combined mass is\({\rm{55}}{\rm{.0}}\;{\rm{kg}}\)? (c) What force does the wheel exert on the ground?

Scissors are like a double-lever system. Which of the simple machines inFigure 9.23andFigure 9.24is most analogous to scissors?

A round pencil lying on its side as inFigure 9.13is in neutral equilibrium relative to displacements perpendicular to its length. What is its stability relative to displacements parallel to its length?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free