Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Under what conditions can a rotating body be in equilibrium? Give an example.

Short Answer

Expert verified

The total torque is zero and the angular acceleration will be zero and angular velocity remains constant.

Step by step solution

01

Rotational equilibrium

When an object is in rotational equilibrium, with no external torque acting on a body, its angular acceleration will be zero. As the angular acceleration is zero, its angular velocity will be constant.

02

Explanation

So, if an object is rotating with a constant velocity in a particular space, where there is no force acting on it, we can say the object is in rotational equilibrium. For example, it can be a spinning top.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

We analyzed the biceps muscle example with the angle between forearm and upper arm set at 90o. Using the same numbers as inExample 9.4, find the force exerted by the biceps muscle when the angle is 120oand the forearm is in a downward position.

InFigure 9.21, the cg of the pole held by the pole vaulter is \(2.00\;{\rm{m}}\)from the left hand, and the hands are \(0.700\;{\rm{m}}\) apart. Calculate the force exerted by (a) his right hand and (b) his left hand. (c) If each hand supports half the weight of the pole inFigure 9.19, show that the second condition for equilibrium(net\(\tau = 0\))is satisfied for a pivot other than the one located at the center of gravity of the pole. Explicitly show how you follow the steps in the Problem-Solving Strategy for static equilibrium described above.

What minimum coefficient of friction is needed between the legs and the ground to keep the sign inFigure 9.35in the position shown if the chain breaks? (b) What force is exerted by each side on the hinge?

Suppose a \({\rm{900}}\;{\rm{kg}}\)car is on the bridge inFigure\({\rm{9}}{\rm{.34}}\)with its center of mass halfway between the hinges and the cable attachments. (The bridge is supported by the cables and hinges only.) (a) Find the force in the cables. (b) Find the direction and magnitude of the force exerted by the hinges on the bridge.

Explain why the forces in our joints are several times larger than the forces we exert on the outside world with our limbs. Can these forces be even greater than muscle forces (see previous Question)?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free