Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose a \({\rm{900}}\;{\rm{kg}}\)car is on the bridge inFigure\({\rm{9}}{\rm{.34}}\)with its center of mass halfway between the hinges and the cable attachments. (The bridge is supported by the cables and hinges only.) (a) Find the force in the cables. (b) Find the direction and magnitude of the force exerted by the hinges on the bridge.

Short Answer

Expert verified

(a) The force in the cables is\({\rm{13213}}\;{\rm{N}}\).

(b) The force on the hinges is \({\rm{26811}}\;{\rm{N}}\) with \({\rm{67}}{\rm{.8^\circ }}\) approaching the opposite shore, with the bridge.

Step by step solution

01

Concept

Total torque about the point of rotation which is fixed is zero.

02

Diagram

The distance of the CG from the left hinge is \({{\rm{r}}_{\rm{l}}}{\rm{ = 1}}{\rm{.5}}\;{\rm{m}}\).

The distance to the opposite shore is \({{\rm{l}}_{\rm{r}}}{\rm{ = 9}}\;{\rm{m}}\).

The mass of the bridge is \({\rm{m = 2500}}\;{\rm{kg}}\).

The diagram is shown below:

03

Calculation of the force

  1. The torque by the weight of drawbridge is,

\(\begin{array}{c}{{\rm{\tau }}_{{\rm{db}}}}{\rm{ = W \times }}{{\rm{r}}_{\rm{l}}}\\{\rm{ = 2500 \times 9}}{\rm{.8 \times ( - 1}}{\rm{.5)}}\\{\rm{ = - 36750}}\;{\rm{N \times m}}\end{array}\)

The torque due to the weight of the car is(clockwise),

\(\begin{array}{c}{{\rm{\tau }}_{{\rm{car}}}}{\rm{ = }}{{\rm{W}}_{{\rm{car}}}}{\rm{ \times - }}{{\rm{r}}_{{\rm{car}}}}\\{\rm{ = 900 \times 9}}{\rm{.8 \times ( - 4}}{\rm{.5)}}\\{\rm{ = - 39690}}\;{\rm{N \times m}}\end{array}\)

The torque due to tension on the ropes is,

\(\begin{array}{c}{{\rm{\tau }}_{{\rm{rope}}}}{\rm{ = T \times }}{{\rm{r}}_{{\rm{rope}}}}{\rm{ \times sin40^\circ }}\\{\rm{ = T \times 9 \times sin40^\circ }}\\{\rm{ = 5}}{\rm{.79 T}}\end{array}\)

This torque is anticlockwise.

For equilibrium, the net torque is zero. So,

\(\begin{array}{c}{{\rm{\tau }}_{{\rm{db}}}}{\rm{ + }}{{\rm{\tau }}_{{\rm{car}}}}{\rm{ = }}{{\rm{\tau }}_{{\rm{rope}}}}\\{\rm{ - 36750 + ( - 39690) = 5}}{\rm{.79 T}}\\{\rm{T = }}\frac{{36750 + 39690}}{{5.79}}\\{\rm{T = 13213}}\;{\rm{N}}\end{array}\)

Hence, the force is \({\rm{13213}}\;{\rm{N}}\).

04

Calculation of the force on the hinge

  1. We havethe tension from part (a) is\({\rm{T = 13213}}\;{\rm{N}}\).

The horizontal component is,

\(\begin{array}{c}{\rm{Tcos40^\circ }}\\{\rm{ = 13213cos40^\circ }}\\{\rm{ = 10122}}\;{\rm{N}}\end{array}\)

The vertical component is,

\(\begin{array}{c}{\rm{mg + }}{{\rm{m}}_c}{\rm{g - Tsin40^\circ }}\\{\rm{ = (2500 + 900)}} \times {\rm{9}}{\rm{.8 - 13213sin40^\circ }}\\{\rm{ = 24827}}\;{\rm{N}}\end{array}\)

Due to the force in hinge inclined at\({\rm{\theta }}\)with the horizontal, the horizontal component is,

So,

\(\begin{array}{c}{\rm{tan\theta = }}\frac{{{\rm{24827}}}}{{{\rm{10122}}}}\\{\rm{\theta = 67}}{\rm{.8^\circ }}\end{array}\)

The force is,

\(\begin{array}{c}{\rm{F = }}\sqrt {{\rm{10122}}{}^{\rm{2}}{\rm{ + 2482}}{{\rm{7}}^{\rm{2}}}} \\{\rm{ = 26811}}\;{\rm{N}}\end{array}\)

Hence, the force is \({\rm{26811}}\;{\rm{N}}\) with \({\rm{67}}{\rm{.8^\circ }}\)approaching the opposite shore, with the bridge.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free