(a)
Use the intensity of the first sound as,
\(\begin{align}d &= 10\log \frac{I}{{{{10}^{ - 12}}}}\\\frac{d}{{10}} &= \log \frac{I}{{{{10}^{ - 12}}}}\\{10^{\frac{d}{{10}}}} &= \frac{I}{{{{10}^{ - 12}}}}\\I &= {10^{\frac{d}{{10}}}} \times {10^{ - 12}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\end{align}\)
The intensity of the second sound is,
\(\begin{align}d + 17 &= 10\log \frac{{{I_1}}}{{{{10}^{ - 12}}}}\\\frac{{d + 17}}{{10}} &= \log \frac{{{I_1}}}{{{{10}^{ - 12}}}}\\{10^{\frac{{d + 17}}{{10}}}} &= \frac{{{I_1}}}{{{{10}^{ - 12}}}}\\{I_1} &= {10^{\frac{{d + 17}}{{10}}}} \times {10^{ - 12}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\end{align}\)
The ratio of the intensities is,
\(\begin{align}\frac{{{I_1}}}{I} &= \frac{{{{10}^{\frac{{d + 17}}{{10}}}} \times {{10}^{ - 12}}}}{{{{10}^{\frac{d}{{10}}}} \times {{10}^{ - 12}}}}\\{I_1} &= I \times {10^{\frac{{17}}{{10}}}}\\{I_1} &= I \times 50.118\end{align}\)
Therefore the sound is \(50.118\) times more intense than the first.