Use the intensity of the sound,
\(\begin{array}{c}{d_1} = 10\log \frac{{{I_1}}}{{{{10}^{ - 12}}}}\\{10^{\frac{{{d_1}}}{{10}}}} \times {10^{ - 12}} = {I_1}\end{array}\)
Now
\(\begin{array}{c}{d_1} + 40.0 = 10\log \frac{{{I_2}}}{{{{10}^{ - 12}}}}\\{I_2} = {10^{\frac{{{d_1} + 40.0}}{{10}}}} \times {10^{ - 12}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\end{array}\)
The ratio of the intensities is,
\(\begin{array}{c}\frac{{{I_2}}}{{{I_1}}} = \frac{{{{10}^{\frac{{{d_1} + 40.0}}{{10}}}} \times {{10}^{ - 12}}}}{{{{10}^{\frac{{{d_1}}}{{10}}}} \times {{10}^{ - 12}}}}\\\frac{{{I_2}}}{{{I_1}}} = {10^4}\end{array}\)
Therefore, the factor is \({10^4}\) when the amplitude of a sound wave increase if the sound intensity level goes up by\(40.0\;{\rm{dB}}\)