Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What length track does a \[{{\rm{\pi }}^{\rm{ + }}}\]traveling at 0.100c leave in a bubble chamber if it is created there and lives for \[{\rm{2}}{\rm{.60 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}{\rm{\;s}}\]? (Those moving faster or living longer may escape the detector before decaying.)

Short Answer

Expert verified

The distance the particle travels is 0.78m.

Step by step solution

01

Definition of distance travelled by particle

The product of half of the sum of beginning velocity, final velocity, and time is the formula for particle distance travelled.

02

Given Data

Speed of particle\(v = 0.100c\)

Lifespan of particle \(t = 2.6 \times {10^{ - 8}}\;{\rm{s}}\;\)

03

Calculating the distance travelled by a particle

The length of the track can be calculated as-

\[\begin{array}{c}D = vt\\ = \left( {0.100 \times 3 \times {{10}^8}\;{\rm{m/s}}} \right) \times \left( {2.60 \times {{10}^{ - 8}}\;\;{\rm{s}}} \right)\\ = 0.78\;\;{\rm{m}}\end{array}\]

Hence, the distance the particle travels is 0.78m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Do all particles having strangeness also have at least one strange quark in them?

(b) Do all hadrons with a strange quark also have nonzero strangeness?

In supernovas, neutrinos are produced in huge amounts. They were detected from the \({\rm{1987 A}}\) supernova in the Magellanic Cloud, which is about \({\rm{120,000}}\) light years away from the Earth (relatively close to our Milky Way galaxy). If neutrinos have a mass, they cannot travel at the speed of light, but if their mass is small, they can get close.

(a) Suppose a neutrino with a \({\rm{7 - eV/}}{{\rm{c}}^{\rm{2}}}\) mass has a kinetic energy of \({\rm{700 KeV}}\). Find the relativistic quantity \(\gamma {\rm{ = }}\frac{{\rm{1}}}{{\sqrt {{\rm{1 - }}{{{{\rm{\nu }}^{\rm{2}}}} \mathord{\left/ {\vphantom {{{{\rm{\nu }}^{\rm{2}}}} {{{\rm{c}}^{\rm{2}}}}}} \right. \\} {{{\rm{c}}^{\rm{2}}}}}} }}\) for it.

(b) If the neutrino leaves the \({\rm{1987 A}}\) supernova at the same time as a photon and both travel to Earth, how much sooner does the photon arrive? This is not a large time difference, given that it is impossible to know which neutrino left with which photon and the poor efficiency of the neutrino detectors. Thus, the fact that neutrinos were observed within hours of the brightening of the supernova only places an upper limit on the neutrinoโ€™s mass. (Hint: You may need to use a series expansion to find \({\rm{v}}\) for the neutrino, since it \(\gamma \) is so large.)

Accelerators such as the Triangle Universities Meson Facility (TRIUMF) in British Columbia produce secondary beams of pions by having an intense primary proton beam strike a target. Such "meson factories" have been used for many years to study the interaction of pions with nuclei and, hence, the strong nuclear force. One reaction that occurs is\({{\rm{\pi }}^{\rm{ + }}}{\rm{ + p}} \to {{\rm{\Delta }}^{{\rm{ + + }}}} \to {{\rm{\pi }}^{\rm{ + }}}{\rm{ + p}}\), where the \({{\rm{\Delta }}^{{\rm{ + + }}}}\)is a very short-lived particle. The graph in Figure \({\rm{33}}{\rm{.26}}\)shows the probability of this reaction as a function of energy. The width of the bump is the uncertainty in energy due to the short lifetime of the\({{\rm{\Delta }}^{{\rm{ + + }}}}\).

(a) Find this lifetime.

(b) Verify from the quark composition of the particles that this reaction annihilates and then re-creates a d quark and a \({\rm{\bar d}}\)antiquark by writing the reaction and decay in terms of quarks.

(c) Draw a Feynman diagram of the production and decay of the \({{\rm{\Delta }}^{{\rm{ + + }}}}\)showing the individual quarks involved.

An antibaryon has three antiquarks with colors\[{\rm{\bar R\bar G\bar B}}\]. What is its color?

The quark flavor changed \[ \to {\rm{u}}\] takes place in \[{\rm{\beta - }}\]decay. Does this mean that the reverse quark flavor changed \[{\rm{u}} \to \] takes place in \[{\rm{\beta + }}\] decay? Justify your response by writing the decay in terms of the quark constituents, noting that it looks as if a proton is converted into a neutron in \[{\rm{\beta + }}\]decay.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free