Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Another component of the strong nuclear force is transmitted by the exchange of virtual \[{\rm{K - }}\]mesons. Taking \[{\rm{K - }}\]-mesons to have an average mass of \[{\rm{495}}\;{\rm{MeV/}}{{\rm{c}}^{\rm{2}}}\], what is the approximate range of this component of the strong force?

Short Answer

Expert verified

The approximate range of this component of string force is \[{\rm{1}}{\rm{.99 \times 1}}{{\rm{0}}^{{\rm{ - 16}}}}{\rm{\;m}}\].

Step by step solution

01

Definition of Heisenberg’s uncertainty principle

According to Heisenberg's uncertainty principle, it is impossible to precisely measure or compute an object's location and momentum simultaneously. The wave-particle duality of matter underpins this principle.

02

Step 2:Given Data

Average mass of K-mesons-\(m = 495\;{{{\rm{MeV}}} \mathord{\left/

{\vphantom {{{\rm{MeV}}} {{{\rm{c}}^{\rm{2}}}}}} \right.

\kern-\nulldelimiterspace} {{{\rm{c}}^{\rm{2}}}}}\)

03

Finding the approximate range of component

Using the uncertainty equation as a guide, we have-

\[\Delta E \cdot \Delta t = \frac{h}{{4\pi }}\;\; \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 1 \right)\]

Here,\[\Delta E\]is the uncertainty in energy and\[\Delta t\]is the uncertainty in time, and\[h\]is Plank’s constant.

we can get the range of this component,\[{\rm{d}}\], using the relation

\[\Delta t = \frac{d}{c} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 2 \right)\]

Here, c is the speed of light in vacuum.

The uncertainty in energy can be calculated as-

\[\Delta E = m\left( {eV/{c^2}} \right)\;\; \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \left( 3 \right)\]

Using equation (1), (2) and (3), we get-

\[\begin{array}{c}d = \frac{{hc}}{{4\pi \Delta E}}\\ = \frac{{\left( {4.14 \times {{10}^{ - 24}}\;{\rm{GeV}} \cdot {\rm{s}}} \right) \times \left( {3 \times {{10}^8}\;\;{\rm{m/s}}} \right)}}{{4\pi \times \left( {0.495\;{\rm{GeV}}} \right)}}\\ = 1.99 \times {10^{ - 16}}\;\;{\rm{m}}\end{array}\]

Therefore, the approximate range of this component is \[{\rm{1}}{\rm{.99 \times 1}}{{\rm{0}}^{{\rm{ - 16}}}}{\rm{\;m}}\].

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free