Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If the Higgs boson is discovered and found to have mass, will it be considered the ultimate carrier of the weak force? Explain your response.

Short Answer

Expert verified

It will not because the Higgs' role in the Standard model is to provide mass to other particles via the Higgs mechanism, not to carry the weak force.

Step by step solution

01

Definition of Higgs boson theory

The Higgs boson, also known as the Higgs particle, is an elementary particle in particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory.

02

Explanation

Even though it is a massive boson, the Higgs boson is not a carrier of the weak force (note that photons and gluons are both massless bosons).

The carriers of the weak force are W+, W-, and Z0 bosons, while the Higgs boson gives rise to the particle's mass via the Higgs mechanism.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

There are particles called bottom mesons or \({\rm{B}}\)-mesons. One of them is the \({{\rm{B}}^{\rm{ - }}}\)meson, which has a single negative charge; its baryon number is zero, as are its strangeness, charm, and topness. It has a bottomness of \({\rm{ - 1}}\). What is its quark configuration?

Massless particles must travel at the speed of light, while others cannot reach this speed. Why are all massless particles stable? If evidence is found that neutrinos spontaneously decay into other particles, would this imply they have mass?

Because of energy loss due to synchrotron radiation in the LHC at CERN, only 5.00 MeV is added to the energy of each proton during each revolution around the main ring. How many revolutions are needed to produce 7.00 TeV (7000 GeV) protons, if they are injected with an initial energy of 8.00 GeV?

Accelerators such as the Triangle Universities Meson Facility (TRIUMF) in British Columbia produce secondary beams of pions by having an intense primary proton beam strike a target. Such "meson factories" have been used for many years to study the interaction of pions with nuclei and, hence, the strong nuclear force. One reaction that occurs is\({{\rm{\pi }}^{\rm{ + }}}{\rm{ + p}} \to {{\rm{\Delta }}^{{\rm{ + + }}}} \to {{\rm{\pi }}^{\rm{ + }}}{\rm{ + p}}\), where the \({{\rm{\Delta }}^{{\rm{ + + }}}}\)is a very short-lived particle. The graph in Figure \({\rm{33}}{\rm{.26}}\)shows the probability of this reaction as a function of energy. The width of the bump is the uncertainty in energy due to the short lifetime of the\({{\rm{\Delta }}^{{\rm{ + + }}}}\).

(a) Find this lifetime.

(b) Verify from the quark composition of the particles that this reaction annihilates and then re-creates a d quark and a \({\rm{\bar d}}\)antiquark by writing the reaction and decay in terms of quarks.

(c) Draw a Feynman diagram of the production and decay of the \({{\rm{\Delta }}^{{\rm{ + + }}}}\)showing the individual quarks involved.

The decay mode of the negative muon is \({{\rm{\mu }}^{\rm{ - }}} \to {{\rm{e}}^{\rm{ - }}}{\rm{ + }}{{\rm{\bar \nu }}_{\rm{e}}}{\rm{ + }}{{\rm{\nu }}_{\rm{\mu }}}\). (a) Find the energy released in \({\rm{MeV}}\). (b) Verify that charge and lepton family numbers are conserved.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free