Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Identify evidence for electroweak unification.

Short Answer

Expert verified

The predictions of one massless, three massive bosons, and one massive spin=0 boson confirmed the theory.

Step by step solution

01

Definition of electroweak unification

The electroweak interaction is a fundamental force that represents the union of electromagnetic and weak nuclear interactions. Glashow, Weinberg, and Salam's work demonstrated that electromagnetic and weak nuclear forces can be understood as a single interaction.

02

Explanation

Salam, Ward, and Weinberg predicted the existence of three massive (with rough estimates, of the masses for W+, W_ and Z0 ) and one massless spin 1 bosons while researching electroweak theory (a way of relating weak with electromagnetic interactions). All of these particles have been confirmed, along with their masses.

The Higgs boson, a spin 0 massive boson, was also predicted, and the particle has recently been confirmed.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Discuss the similarities and differences between the photon and the Z0in terms of particle properties, including forces felt.

What lifetime do you expect for an antineutron isolated from normal matter?

A proton and an antiproton collide head-on, with each having a kinetic energy of 7.00TeV (such as in the LHC at CERN). How much collision energy is available, taking into account the annihilation of the two masses? (Note that this is not significantly greater than the extremely relativistic kinetic energy.)

Explain how the weak force can change strangeness by changing quark flavor.

In supernovas, neutrinos are produced in huge amounts. They were detected from the \({\rm{1987 A}}\) supernova in the Magellanic Cloud, which is about \({\rm{120,000}}\) light years away from the Earth (relatively close to our Milky Way galaxy). If neutrinos have a mass, they cannot travel at the speed of light, but if their mass is small, they can get close.

(a) Suppose a neutrino with a \({\rm{7 - eV/}}{{\rm{c}}^{\rm{2}}}\) mass has a kinetic energy of \({\rm{700 KeV}}\). Find the relativistic quantity \(\gamma {\rm{ = }}\frac{{\rm{1}}}{{\sqrt {{\rm{1 - }}{{{{\rm{\nu }}^{\rm{2}}}} \mathord{\left/ {\vphantom {{{{\rm{\nu }}^{\rm{2}}}} {{{\rm{c}}^{\rm{2}}}}}} \right. \\} {{{\rm{c}}^{\rm{2}}}}}} }}\) for it.

(b) If the neutrino leaves the \({\rm{1987 A}}\) supernova at the same time as a photon and both travel to Earth, how much sooner does the photon arrive? This is not a large time difference, given that it is impossible to know which neutrino left with which photon and the poor efficiency of the neutrino detectors. Thus, the fact that neutrinos were observed within hours of the brightening of the supernova only places an upper limit on the neutrinoโ€™s mass. (Hint: You may need to use a series expansion to find \({\rm{v}}\) for the neutrino, since it \(\gamma \) is so large.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free