Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Why does the \({\eta ^0}\) meson have such a short lifetime compared to most other mesons?

Short Answer

Expert verified

As, the \({\eta ^0}\) meson consists of quark-antiquark pairs of the same flavour, its lifetime is short.

Step by step solution

01

Meson

Mesons are hadronic subatomic particles made up of an equal number of quarks and antiquarks, generally one of each, and linked together by strong interactions in particle physics.

02

Lifetime of meson

Unlike the other mesons, that consists of a quark and its appropriate antiquark of the same flavour, such as \({\rm{u\bar u}}\). These quark-antiquark pairs tend to annihilate, which causes its shorter lifetime.

Therefore, due to quark and antiquark, lifetime of meson is short.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose you are designing a proton decay experiment and you can detect \({\rm{50}}\) percent of the proton decays in a tank of water.

(a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of \({\rm{1}}{{\rm{0}}^{{\rm{31}}}}{\rm{ y}}\)?

(b) How many cubic meters of water is this?

(c) If the actual lifetime is \({\rm{1}}{{\rm{0}}^{{\rm{33}}}}{\rm{ y}}\), how long would you have to wait on an average to see a single proton decay?

Consider a detector needed to observe the proposed, but extremely rare, decay of an electron. Construct a problem in which you calculate the amount of matter needed in the detector to be able to observe the decay, assuming that it has a signature that is clearly identifiable. Among the things to consider are the estimated half-life (long for rare events), and the number of decays per unit time that you wish to observe, as well as the number of electrons in the detector substance.

Suppose a \[{{\rm{W}}^{\rm{ - }}}\]created in a bubble chamber lives for \[{\rm{5}}{\rm{.00 \times 1}}{{\rm{0}}^{{\rm{ - 25}}}}{\rm{\;s}}\]. What distance does it move in this time if it is traveling at \[{\rm{0}}{\rm{.900c}}\]? Since this distance is too short to make a track, the presence of the \[{{\rm{W}}^{\rm{ - }}}\]must be inferred from its decay products. Note that the time is longer than the given \[{{\rm{W}}^{\rm{ - }}}\]lifetime, which can be due to the statistical nature of decay or time dilation.

Because of energy loss due to synchrotron radiation in the LHC at CERN, only 5.00 MeV is added to the energy of each proton during each revolution around the main ring. How many revolutions are needed to produce 7.00 TeV (7000 GeV) protons, if they are injected with an initial energy of 8.00 GeV?

What lifetime do you expect for an antineutron isolated from normal matter?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free