Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A microphone receiving a pure sound tone feeds an oscilloscope, producing a wave on its screen. If the sound intensity is originally 2.00 x 10-5 W/m2, but is turned up until the amplitude increases by 30.0%, what is the new intensity?

Short Answer

Expert verified

The new intensity is \(3.38 \times {10^{ - 5}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\).

Step by step solution

01

Identification of the given data

The given data can be listed below as:

The initial value of the sound intensity is\({{\rm{I}}_{\rm{1}}} = 2.00 \times {10^{ - 5}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\).

The final amplitude increased by 30.0% than the initial amplitude.

02

Significance of the amplitude

The amplitude is described as the maximum extent of the oscillation or vibration that is measured from the equilibrium position. The amplitude of an object is directly proportional to the root of the intensity of that object.

03

Determination of the new intensity

Let the initial amplitude be\({{\rm{A}}_{\rm{1}}}\)and the final amplitude is 30.0% than the initial amplitude that is\({{\rm{A}}_{\rm{1}}} \times \frac{{130}}{{100}} = 1.3{{\rm{A}}_{\rm{1}}}\).

The equation of the relation between the amplitude and the intensity of the microphone is expressed as:

\(\begin{aligned}\frac{{{{\rm{I}}_{\rm{1}}}}}{{{{\rm{I}}_{\rm{2}}}}} = \frac{{{{\rm{A}}^{\rm{2}}}_{\rm{1}}}}{{{{\rm{A}}^{\rm{2}}}_{\rm{2}}}}\\{{\rm{I}}_{\rm{2}}} = \frac{{{{\rm{I}}_{\rm{1}}}{{\rm{A}}^{\rm{2}}}_{\rm{2}}}}{{{{\rm{A}}^{\rm{2}}}_{\rm{1}}}}\end{aligned}\)

Here,\({{\rm{I}}_{\rm{1}}}\)is the initial value of the sound intensity,\({{\rm{I}}_{\rm{2}}}\)is a new intensity,\({{\rm{A}}_{\rm{1}}}\)is the initial amplitude, and\({{\rm{A}}_{\rm{2}}}\)is the final amplitude.

Substitute\({\rm{1}}{\rm{.3}}{{\rm{A}}_{\rm{1}}}\)for\({{\rm{A}}_{\rm{1}}}\)and\(2.00 \times {10^{ - 5}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\)for\({{\rm{I}}_{\rm{1}}}\)in the above equation.

\(\begin{aligned}{{\rm{I}}_{\rm{2}}} &= \frac{{\left( {2.00 \times {{10}^{ - 5}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}} \right){{\left( {1.3{{\rm{A}}_{\rm{1}}}} \right)}^2}}}{{{{\rm{A}}^{\rm{2}}}_{\rm{1}}}}\\ &= \frac{{\left( {2.00 \times {{10}^{ - 5}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}} \right)\left( {1.69{{\rm{A}}^{\rm{2}}}_{\rm{1}}} \right)}}{{{{\rm{A}}^{\rm{2}}}_{\rm{1}}}}\\ &= \left( {2.00 \times {{10}^{ - 5}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}} \right)\left( {1.69} \right)\\ &= 3.38 \times {10^{ - 5}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\end{aligned}\)

Thus, the new intensity is \(3.38 \times {10^{ - 5}}\;{\rm{W/}}{{\rm{m}}^{\rm{2}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free