Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Are some types of cancer more sensitive to radiation than others? If so, what makes them more sensitive?

Short Answer

Expert verified

The dose of radiation is determined by the location of the tumour in the body and its adhesion to healthy cells.

Step by step solution

01

Definition of cancer

Cancer is a term used to describe a group of diseases characterised by abnormal cell proliferation that has the potential to infiltrate or spread to other regions of the body. Benign tumours, on the other hand, do not spread. A lump, unusual bleeding, a persistent cough, unexplained weight loss, and a change in bowel motions are all possible indications and symptoms. While these signs and symptoms may suggest cancer, they might also signal something else.

02

Explanation for whether some types of cancer are more sensitive to radiation

Cancer cells have a proclivity for rapidly dividing and growing out of control. Radiation treatment destroys dividing cancer cells, but it also kills dividing cells in normal tissues. Damage to normal cells has unfavourable consequences. Radiation treatment is always a delicate balance of eliminating cancer cells while limiting harm to healthy cells.

Therefore, location of the cancer in the body and attachment to healthy cells determines the dose of the radiation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Calculate the energy released in the neutron-induced fission reaction\(n{ + ^{239}}Pu{ \to ^{96}}Sr{ + ^{140}}Ba + 4n\), given \(m{(^{96}}Sr) = 95.921750{\rm{ }}u\)

And

\(m{(^{140}}Ba) = 139.910581{\rm{ }}u\).

(b) Confirm that the total number of nucleons and total charge are conserved in this reaction.

A large power reactor that has been in operation for some months is turned off, but residual activity in the core still produces 150 MW of power. If the average energy per decay of the fission products is 1.00 MeV, what is the core activity in curies?

Verify that the total number of nucleons, total charge, and electron family number are conserved for each of the fusion reactions in the carbon cycle given in the above problem. (List the value of each of the conserved quantities before and after each of the reactions.)

The annual radiation dose from \(^{14}{\rm{C}}\)in our bodies is \(0.01\,{\rm{mSv}}/{\rm{y}}\). Each \(^{14}{\rm{C}}\) decay emits a \({\beta ^ - }\) averaging \(0.0750\,{\rm{MeV}}\). Taking the fraction of \(^{14}{\rm{C}}\)to be \(1.3 \times {10^{ - 12}}\;{\rm{N}}\)of normal \(^{12}{\rm{C}}\), and assuming the body is \(13\% \) carbon, estimate the fraction of the decay energy absorbed. (The rest escapes, exposing those close to you.)

Fallout from nuclear weapons tests in the atmosphere is mainly \({}^{{\rm{90}}}{\rm{Sr}}\) and \({}^{137}Cs\) , which have \(28.6\) - and \(32.2y\) half-lives, respectively. Atmospheric tests were terminated in most countries in 1963, although China only did so in 1980. It has been found that environmental activities of these two isotopes are decreasing faster than their half-lives. Why might this be?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free