Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The ruins of the Chernobyl reactor are enclosed in a huge concrete structure built around it after the accident. Some rain penetrates the building in winter, and radioactivity from the building increases. What does this imply is happening inside?

Short Answer

Expert verified

Rain has the ability to start new nuclear reactions.

Step by step solution

01

Define radioactivity

Radioactivity is a phenomenon in which a few substances spontaneously release energy and subatomic particles. The nuclear instability of an atom causes radioactivity.

02

Explanation

This might be because the neutrons emitted by the radioactive substance are absorbed by the water, especially oxygen. When an oxygen nucleus takes a neutron, it transforms into radioactive nitrogen, increasing the building's radioactivity.

The following is the reaction,

\({}^1n + {}^{16}O \to {}^1p + {}^{16}N\) (Activation reaction)

We also have a reaction for decay,

\({}^{16}N \to {}^{16}O + \beta + \gamma \)

Therefore,\({\rm{\beta }}\)and\({\rm{\gamma }}\)radiations can pose a significant threat and are quite dangerous, which is why these showers might pose a significant risk.

On the other side, Chernobyl utilised polonium to generate energy, and rain can induce additional radioactive decay, posing a serious threat.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

How many kilograms of water are needed to obtain the \(198.8{\rm{ }}mol\) of deuterium, assuming that deuterium is \(0.01500\% \) (by number) of natural hydrogen?

The naturally occurring radioactive isotope \(^{{\rm{232}}}{\rm{Th}}\) does not make good fission fuel, because it has an even number of neutrons; however, it can be bred into a suitable fuel (much as \(^{{\rm{238}}}{\rm{U}}\) is bred into\(^{239}P\)).

(a) What are Z and N for\(^{{\rm{232}}}{\rm{Th}}\)?

(b) Write the reaction equation for neutron captured by \(^{{\rm{232}}}{\rm{Th}}\) and identify the nuclide \(^AX\)produced in\(n{ + ^{232}}Th{ \to ^A}X + \gamma \).

(c) The product nucleus \({\beta ^ - }\)decays, as does its daughter. Write the decay equations for each, and identify the final nucleus.

(d) Confirm that the final nucleus has an odd number of neutrons, making it a better fission fuel.

(e) Look up the half-life of the final nucleus to see if it lives long enough to be a useful fuel.

Verify by listing the number of nucleons, total charge, and electron family number before and after the cycle that these quantities are conserved in the overall proton-proton cycle in \(2{e^ - } + {4^1}H{ \to ^4}He + 2{\nu _e} + 6\gamma \).

Breeding plutonium produces energy even before any plutonium is fissioned. (The primary purpose of the four nuclear reactors at Chernobyl was breeding plutonium for weapons. Electrical power was a by-product used by the civilian population.) Calculate the energy produced in each of the reactions listed for plutonium breeding just following Example 32.4. The pertinent masses are \(m\left( {{\rm{ }}239{\rm{ U}}} \right){\rm{ }} = {\rm{ }}239.054289{\rm{ u }},{\rm{ }}m\left( {{\rm{ }}239{\rm{ Np}}} \right){\rm{ }} = {\rm{ }}239.052932{\rm{ u }},{\rm{ and }}m\left( {{\rm{ }}239{\rm{ Pu}}} \right){\rm{ }} = {\rm{ }}239.052157{\rm{ u}}\)

Calculate the energy output in each of the fusion reactions in the proton-proton cycle, and verify the values given in the above summary.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free