Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A cyclotron accelerates charged particles as shown in \({\rm{Figure 22}}{\rm{.64}}\). Using the results of the previous problem, calculate the frequency of the accelerating voltage needed for a proton in a\({\rm{1}}{\rm{.20 - T}}\) field.

Short Answer

Expert verified

Frequency is \({\rm{18}}{\rm{.3}}\;{\rm{MHz}}\).

Step by step solution

01

Define frequency

The number of times a repeated event occurs per unit of time is referred to as frequency.

02

Evaluating the frequency

Apply the equation\({\rm{f = }}\frac{{{\rm{qB}}}}{{{\rm{2\pi m}}}}\)to find the frequency. Use the values,

\(\begin{array}{l}{\rm{m}} = {\rm{1}}{\rm{.67}} \times {\rm{1}}{{\rm{0}}^{{\rm{ - 27}}}}\;{\rm{kg}}\\{\rm{q}} = {\rm{1}}{\rm{.60}} \times {\rm{1}}{{\rm{0}}^{{\rm{ - 19}}}}\;{\rm{C}}\end{array}\)

\({\rm{f = }}\frac{{{\rm{qB}}}}{{{\rm{2\pi m}}}}\)

\({\rm{ = }}\frac{{\left( {{\rm{1}}{\rm{.60 \times 1}}{{\rm{0}}^{{\rm{ - 19}}}}\;{\rm{C}}} \right){\rm{ \times 1}}{\rm{.20}}\;{\rm{T}}}}{{{\rm{2\pi \times }}\left( {{\rm{1}}{\rm{.67 \times 1}}{{\rm{0}}^{{\rm{ - 27}}}}\;{\rm{kg}}} \right)}}\)

\({\rm{ = 1}}{\rm{.83 \times 1}}{{\rm{0}}^{\rm{7}}}\;{\rm{Hz}}\left( {\frac{{{\rm{MHz}}}}{{{\rm{1}}{{\rm{0}}^{\rm{6}}}\;{\rm{Hz}}}}} \right)\)

\({\rm{ = 18}}{\rm{.3}}\;{\rm{MHz}}\)

Therefore, frequency is \({\rm{18}}{\rm{.3}}\;{\rm{MHz}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free