Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You are told that in a certain region there is either a uniform electric or magnetic field. What measurement or observation could you make to determine the type? (Ignore the Earth’s magnetic field.)

Short Answer

Expert verified

The strength of the magnetic force on a charged particle, a compass, or a bar magnet can help us to determine the type of the magnetic field.

Step by step solution

01

Definition of electromagnetic field

A classical electromagnetic field is created by accelerating electric charges. It is the classical equivalent to the quantized electromagnetic field tensor in quantum electrodynamics and is described by classical electrodynamics.

02

Explanation

There are several possibilities to measure it, which involve a charged particle, a compass, or a bar magnet. In all three cases, the uniform magnetic field force experience by them will be the same at each point in the measured region.

However, for the non-uniform magnetic field, the strength of the force will be variable/different at the different points in the magnetic region.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use the right-hand rules to show that the force between the two loops in Figure 22.49 is attractive if the currents are in the same direction and repulsive if they are in opposite directions. Is this consistent with like poles of the loops repelling and unlike poles of the loops attracting? Draw sketches to justify your answers.

Consider a mass separator that applies a magnetic field perpendicular to the velocity of ions and separates the ions based on the radius of curvature of their paths in the field. Construct a problem in which you calculate the magnetic field strength needed to separate two ions that differ in mass, but not charge, and have the same initial velocity. Among the things to consider are the types of ions, the velocities they can be given before entering the magnetic field, and a reasonable value for the radius of curvature of the paths they follow. In addition, calculate the separation distance between the ions at the point where they are detected.

The force per meter between the two wires of a jumper cable being used to start a stalled car is 0.225N/m(a) What is the current in the wires, given they are separated by 2.00cm? (b) Is the force attractive or repulsive?

An AC appliance cord has its hot and neutral wires separated by 3.00mmand carries a5.00-A current. (a) What is the average force per meter between the wires in the cord? (b) What is the maximum force per meter between the wires? (c) Are the forces attractive or repulsive? (d) Do appliance cords need any special design features to compensate for these forces?

A charged particle having mass \({\rm{6}}{\rm{.64 \times 1}}{{\rm{0}}^{{\rm{ - 27}}}}{\rm{\;kg}}\) (that of a helium atom) moving at \({\rm{8}}{\rm{.70 \times 1}}{{\rm{0}}^{\rm{5}}}{\rm{\;m/s}}\) perpendicular to a \({\rm{1}}{\rm{.50 - T}}\) magnetic field travels in a circular path of radius \({\rm{16}}{\rm{.0\;mm}}\).(a)What is the charge of the particle?(b)What is unreasonable about this result?(c)Which assumptions are responsible?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free